tensorflow weight_variable going】的更多相关文章

# coding: utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constan…
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru…
前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出最终运行代码.如果对Tensorflow的一些基本操作不熟悉的话,推荐先看下极客学院的这篇文章再回来看本文. 数据集 数据集是MNIST,一个入门级的计算机视觉数据集,它包含各种手写数字图片: 每张图片包含28X28个像素点,标签即为图片中的数字. 问题 使用MNIST数据集进行训练,识别图片中的手…
tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html 前言 这篇博客将用tensorflow实现CNN卷积神经网络去训练MNIST数据集,并测试一下MNIST的测试集,算出精确度. 由于这一篇博客需要要有一定的基础,基础部分请看前面的tensorflow笔记,起码MNIST手写识别系列一和CNN初探要看一下,对于已经讲过的东西,不会再仔细复述,可能会…
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对于上图中隐藏层的第j个神经元的输出可以表示为: 其中,f是激活函数,bj为每个神经元的偏置. 1.2 卷积神经网络 1.2.1 网络结构 卷积神经网络与多层前馈神经网络的结构不一样,其每层神经元与下一层神经元不是全互连,而是部分连接,即每层神经层中只有部分的神经元与下一层神经元有连接,但是神经元之间…
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为训练样本,右边为测试样本,如果只训练了左边的情况,右边的一定会预测错误,然而在我们人眼看来,这两个圆形的特征其实是一样的,不过是移动了一个位置而已,但是因为前馈网络结构的原因,导致在做权重分配的时候,把更多的权重分配给了左上角,右下角分配的较少,所以在做最终预测,便会出现较大的误差.所以,我们需要在…
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中对应位置的值相乘, 并用它们的和作…
模型构建 1.示例代码linear_regression_model.py #!/usr/bin/python # -*- coding: utf-8 -* import tensorflow as tf import numpy as np class linearRegressionModel: def __init__(self,x_dimen): self.x_dimen = x_dimen self._index_in_epoch = 0 self.constructModel() s…
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeural Network,CNN) 19世纪60年代科学家最早提出感受野(ReceptiveField).当时通过对猫视觉皮层细胞研究,科学家发现每一个视觉神经元只会处理一小块区域的视觉图像,即感受野.20世纪80年代,日本科学家提出神经认知机(Neocognitron)的概念,被视为卷积神经网络最初…
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNIST手写数字库对CNN(卷积神经网络)进行训练,准确度达到98%以上时,再准备独家手写数字10个.画图软件编辑的数字10个共计20个,让训练好的CNN进行识别,考察其识别准确度. 调试代码: 坑1:ModuleNotFoundError: No module named 'google' 解决:pi…
先上代码: from __future__ import absolute_import from __future__ import division from __future__ import print_function # -*- coding: utf-8 -*- """ Created on Tue Nov 14 20:34:00 2017 @author: HJL """ # Copyright 2015 The TensorFl…
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况.本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料. 一. 相关函数 TensorBoard的输入是tensorflow保存summary data的日志文件.日志文件名的形式如:e…
一.网络结构 二.代码 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) import tensorflow as tf sess = tf.InteractiveSession() def weight_variable(shape): initial = tf.truncated_normal(shap…
图片样本可视化 原文第四篇中,我们介绍了官方的入门案例MNIST,功能是识别手写的数字0-9.这是一个非常基础的TensorFlow应用,地位相当于通常语言学习的"Hello World!". 我们先不进入TensorFlow 2.0中的MNIST代码讲解,因为TensorFlow 2.0在Keras的帮助下抽象度比较高,代码非常简单.但这也使得大量的工作被隐藏掉,反而让人难以真正理解来龙去脉.特别是其中所使用的样本数据也已经不同,而这对于学习者,是非常重要的部分.模型可以看论文.在网…
一.前述 TensorBoard是tensorFlow中的可视化界面,可以清楚的看到数据的流向以及各种参数的变化,本文基于一个案例讲解TensorBoard的用法. 二.代码 设计一个MLP多层神经网络来训练数据 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data max_steps = 1000#最大迭代次数 learning_rate = 0.001#学习率 dropout =…
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我们这次使用CNN卷积神经网络来进行识别. 卷积神经网络我的理解是部分模仿了人眼的功能. 我们在看一个图像时不是一个像素点一个像素点去分辨的,我们的眼睛天然地具有大局观,我们看到某个图像时自动地会把其中的细节部分给聚合起来进行识别,相反,如果我们用个放大镜看到其中的各个像素点时反而不知道这是啥东西了.…
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/6052541.html from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) '''获取程序集'''…
博主原文链接:用TensorFlow教你做手写字识别(准确率94.09%) 如需转载,请备注出处及链接,谢谢. 2012 年,Alex Krizhevsky, Geoff Hinton, and Ilya Sutskever 赢得 ImageNet 挑战赛冠军,基于CNN的图像识别开始受到普遍关注,CNN 成为了图像分类的黄金标准,自那以后,科学界掀开了基于深度神经网络对图像识别的大探索,现如今,深度学习对图像的识别能力已经超出了人眼的辨别能力.本公众号的图像识别系列将循序渐进,层层深入的带领读…
更新记录: 2018年2月5日 初始文章版本 近几天需要进行英语手写体识别,查阅了很多资料,但是大多数资料都是针对MNIST数据集的,并且主要识别手写数字.为了满足实际的英文手写识别需求,需要从训练集构造到神经网络搭建各个方面对现有代码进行修改. 神经网络的结构: 1.输入28*28=784维行向量 2.卷积层:卷积核大小5*5,共32个,激活函数ReLu 3.池化层:最大值池化,2*2窗口 4.卷积层:卷积核大小5*5,共64个,激活函数ReLu 5.池化层:最大值池化,2*2窗口 6.全连接…
TensorFlow Debugger(tfdbg),TensorFlow专用调试器.用断点.计算机图形化展现实时数据流,可视化运行TensorFlow图形内部结构.状态.有助训练推理调试模型错误.https://www.tensorflow.org/programmers_guide/debugger . 常见错误类型,非数字(nan).无限值(inf).tfdbg命令行界面(command line interface,CLI). Debugger示例.错误运行MNIST训练,通过Tenso…
MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机视觉数据集,美国中学生手写数字.训练集6万张图片,测试集1万张图片.数字经过预处理.格式化,大小调整并居中,图片尺寸固定28x28.数据集小,训练速度快,收敛效果好. MNIST数据集,NIST数据集子集.4个文件.train-label-idx1-ubyte.gz 训练集标记文件(28881字节)…
Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中…
#卷积神经网络cnn import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #数据包,如果没有自动下载 number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #用测试集来评估神经网络的准确度 def computer_accuracy(v_xs,v_ys): global pre…
MNIST 数据 train-images-idx3-ubyte.gz:训练集图片 train-labels-idx1-ubyte.gz:训练集图片类别 t10k-images-idx3-ubyte.gz:测试集图片 t10k-labels-idx1-ubyte.gz:测试集图片类别 训练 # 加载训练集和测试集数据 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist =…
在深度学习章节里,已经介绍了批量归一化的概念,详情请点击这里:第九节,改善深层神经网络:超参数调试.正则化以优化(下) 神经网络在进行训练时,主要是用来学习数据的分布规律,如果数据的训练部分和测试部分分布不一样,那么网络的泛化能力会变得非常差.而且对于训练的数据,每批分布也是不一样的,那么网络在迭代的过程中也要学习和适应不同的分布.这会大大降低网络的训练速度.此外,数据的分布对于激活函数来说也非常重要,有时数据分布范围太大不利于利用激活函数的非线性特性,比如激活函使用Sigmoid函数时,会导致…
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量表示(Vector Representations of Words) . 循环神经网络(RNN).LSTM(Long-Short Term Memory, LSTM) . 用深度学习网络搭建一个聊天机器人 0. 个人理解 在学习的最开始,我在这里写一个个人对deep leanring和神经网络的粗…
运行代码: from __future__ import print_function import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def compute_accuracy(v_xs, v_ys): globa…
https://www.kaggle.com/kakauandme/tensorflow-deep-nn 本人只是负责将这个kernels的代码整理了一遍,具体还是请看原链接 import numpy as np import pandas as pd import tensorflow # settings LEARNING_RATE = 1e-4 # set to 20000 on local environment to get 0.99 accuracy TRAINING_ITERATI…
如果你可视化CNN的各层级结构,你会发现里面的每一层神经元的激活态都对应了一种特定的信息,越是底层的,就越接近画面的纹理信息,如同物品的材质. 越是上层的,就越接近实际内容(能说出来是个什么东西的那些信息),如同物品的种类. 网络结构 卷积层->池化层->卷积层->池化层->全连接层->Softmax分类器 卷积层激活函数使用relu 卷积层relu激活,偏置项使用极小值初始化,防止Relu出现死亡节点 全连接层激活函数使用relu 池化层模式使用SAME,所以stride取…
TensorFlow基础见前博客 简介 传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别.本教程将验证码识别问题转化为分类的问题,实现对验证码进行整体识别. 步骤简介 本教程一共分为四个部分 generate_captcha.py - 利用 Captcha 库生成验证码: captcha_model.py - CNN 模型: train_captcha.py - 训练 CNN 模型: predict_captcha.py - 识别验证码. 数据学习 安装 captcha 库 pi…