Spark:读取hdfs gz压缩包】的更多相关文章

spark 1.5.1是支持直接读取gz格式的压缩包的,和普通文件没有什么区别: 使用spark-shell进入spark shell 交互界面: 输入命令: sc.textFile("\huawei\mr\20161120\880873\*.gz").foreach(println) 回车后是可以看到该目下很多个gz压缩包文件都被打印出来了. 参考文章: http://blog.csdn.net/xuyaoqiaoyaoge/article/details/52943606…
1. 任务背景 近日有个项目任务,要求读取压缩在Zip中的百科HTML文件,经分析发现,提供的Zip文件有如下特点(=>指代对应解决方案): (1) 压缩为分卷文件 => 只需将解压缩在同一目录中的一个分卷zip即可解压缩出整个文件 (2) 压缩文件中又包含不同的两个文件夹,且各包含n个小zip文件,小zip文件中包含目录及对应的HTML文本文件 采用第一方案:依次解压缩各小zip文件,存放在一个目录中,然后上传到HDFS中 存在问题:每个小zip都包含上万个小文件,按照第一方案解压缩,耗费的…
def main(args: Array[String]): Unit = { val conf = new SparkConf() conf.set("spark.master", "local") conf.set("spark.app.name", "spark demo") val sc = new SparkContext(conf); // 读取hdfs数据 val textFileRdd = sc.textFil…
package iie.udps.example.operator.spark; import scala.Tuple2; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; impor…
Spark也有数据本地化的概念(Data Locality),这和MapReduce的Local Task差不多,如果读取HDFS文件,Spark则会根据数据的存储位置,分配离数据存储最近的Executor去执行任务. 这么理解没错,我搭建的Spark集群情况是这样: 15台DataNode节点的HDFS集群,我在每个DataNode上都部署了一个Spark Worker,并且,启动Spark Application的时候,每个Worker都有一个Executor,这样理论上来说,只要读取HDF…
在分布式计算中,为了提高计算速度,数据本地性是其中重要的一环. 不过有时候它同样也会带来一些问题. 一.问题描述 在分布式计算中,大多数情况下要做到移动计算而非移动数据,所以数据本地性尤其重要,因此我们往往也是将hdfs和spark部署在相同的节点上,有些人可能会发现即使他已经这么做了,在spark的任务中的locality还是ANY,这说明所有的数据都是走的网络IO. 在没有没有shuffle的情况下,仅在数据读取阶段网络IO占用都很严重,可以看下ganglia的监控,最高峰出现在读取数据阶段…
错误信息: scala> val file = sc.textFile("hdfs://kit-b5:9000/input/README.txt") 13/10/29 16:59:45 DEBUG MutableMetricsFactory: field org.apache.hadoop.metrics2.lib.MutableRate org.apache.hadoop.security.UserGroupInformation$UgiMetrics.loginSuccess…
在分布式计算中,为了提高计算速度,数据本地性是其中重要的一环. 不过有时候它同样也会带来一些问题. 一.问题描述 在分布式计算中,大多数情况下要做到移动计算而非移动数据,所以数据本地性尤其重要,因此我们往往也是将hdfs和spark部署在相同的节点上,有些人可能会发现即使他已经这么做了,在spark的任务中的locality还是ANY,这说明所有的数据都是走的网络IO. 在没有没有shuffle的情况下,仅在数据读取阶段网络IO占用都很严重,可以看下ganglia的监控,最高峰出现在读取数据阶段…
最近用spark在集群上验证一个算法的问题,数据量大概是一天P级的,使用hiveContext查询之后再调用算法进行读取效果很慢,大概需要二十多个小时,一个查询将近半个小时,代码大概如下: try: sql = """ select ltescrsrq, mr_ltencrsrq1, mr_ltencrsrq2, mr_ltencrsrq3, ltescrsrp, mr_ltencrsrp1, mr_ltencrsrp2, mr_ltencrsrp3, mr_ltesctad…
package com.grady import org.apache.spark.SparkConf import org.apache.spark.sql.{Row, SaveMode, SparkSession} /** * csv 文件数据写入hive */ object CsvToHive { def main(args: Array[String]): Unit = { val conf: SparkConf = new SparkConf() val spark: SparkSes…