本文是对tesseract-ocr 使用的进一步技术升级说明,使用默认的识别库识别率比较低怎么办? 不用着急,tesseract-ocr本身的工具中提供了使用你提供的素材进行人工修正以提高识别率的方法.下面我们就来看一下. 参考: http://my.oschina.net/lixinspace/blog/60124 1    下载并安装3.02版本的tesseract 2     如果你的训练素材是很多张非tiff格式的图片,首先要做的事情就是将这么图片合并(个人觉得素材越多,基本每个字母和数…
1.背景 前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率. 本文将针对某个网站的验证码进行样本训练,形成自己的语言库,来提高验证码识别率. 2.准备工具 tesseract样本训练有一个官方流程说明,https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract#run-tesseract-for-training,不过都是英文的,个人认为这…
0.目标 很多特殊场景,原生的字库识别率不高,这时候就需要根据需求自己训练字库生成traineddata文件. 一.前期准备工作 1.安装jdk   用于运行jTessBoxEditor 2.安装jTessBoxEditor   用于调整图片上文字的内容和位置 3. 安装tesseract5.0 jdk下载地址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html jTessBox…
一.准备工作 需要的文件 tif文件和box文件. 如果你打标打好了,但是是分批次打标的,那么可以合并字库,我们最初只需要 tif 和 box 文件,如下: 二.生成对应的 .tr 训练文件 根据不同的tif文件依次使用下面这个命令 tesseract qyc.word.exp4.tif qyc.word.exp4 nobatch box.train 完成后效果是这样的,每个组合都会有一个对应的 .tr 文件 三.从所有文件中提取字符 unicharset_extractor fst.word.…
Tesseract 简介 Tesseract(/'tesərækt/) 这个词的意思是"超立方体",指的是几何学里的四维标准方体,又称"正八胞体".不过这里要讲的,是一款以其命名的开源 OCR(Optical Character Recognition, 光学字符识别) 软件. 所谓 OCR 是图像识别领域中的一个子领域,该领域专注于对图片中的文字信息进行识别并转换成能被常规文本编辑器编辑的文本. 在 1995 年 Tesseract 曾是世界前三的 OCR 引擎,…
java文字识别程序的关键是寻找一个可以调用的OCR引擎.tesseract-ocr就是一个这样的OCR引擎,在1985年到1995年由HP实验室开发,现在在Google.tesseract-ocr 3.0发布,支持中文.不过tesseract-ocr 3.0不是图形化界面的客户端,别人写的FreeOCR图形化客户端还不支持导入新的 3.0 traineddata.但这标志着,现在有自由的中文OCR软件了. java中使用tesseract-ocr3.01的步骤如下: 1.下载安装tessera…
Tesseract Ocr引擎 1.Tesseract介绍 tesseract 是一个google支持的开源ocr项目,其项目地址:https://github.com/tesseract-ocr/tesseract,目前最新的源码可以在这里下载. 实际使用tesseract ocr也有两种方式:1- 动态库方式 libtesseract  2  - 执行程序方式 tesseract.exe 由于本人也是python菜鸟一个,所以方式1暂时不会,只好采取方式2. 2.Tesseract安装包下载…
1.Tesseract介绍 tesseract 是一个google支持的开源ocr项目,其项目地址:https://github.com/tesseract-ocr/tesseract,目前最新的源码可以在这里下载. 实际使用tesseract ocr也有两种方式:1- 动态库方式 libtesseract  2  - 执行程序方式 tesseract.exe 由于本人也是python菜鸟一个,所以方式1暂时不会,只好采取方式2. 2.Tesseract安装包下载 Tesseract的relea…
注:目前仅说明windows下的情况 前言 网上已经有大量的tesseract的识别教程,但是主要有两个缺点: 大多数比较老,有部分内容已经不适用. 大部分只是就英文的训练进行探索,很少针对中文的训练. 接下来尽可能详细的介绍自己tesseract训练中文识别的经验. 本文中使用的tesseract版本为3.05; 为什么用3.05呢? 从官方文档上看4.0版本(windows版本于2017年1月30号发布)显著的提高了识别率,同时也加大了性能的消耗.理论上我是应该用4.0.但这不是重点.重点是…
工作之余,对这个算法做了一些研究,并成功对验证码进行了识别,对普通验证码识别率在90%左右,识别速度相当快,已基于此做过一些自动查询.提交程序(例如投票.发帖等) ,还上过淘宝店,赚过一笔外快,现将相关算法实现与大家进行分享交流.所有识别算法,包括样本选取.模型训练均为本人参考网上算法思路用C#原创实现. 待续………