python实现之决策树】的更多相关文章

Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析 今天主要讲述的内容是关于决策树的知识,主要包括以下内容:1.分类及决策树算法介绍2.鸢尾花卉数据集介绍3.决策树实现鸢尾数据集分析.希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解.如果文章中存在不足或错误的地方,还请海涵~ 一. 分类及决策树介绍 1.分类         分类其实是从特定的数据中挖掘模式,作出判断的过程.比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都…
__author__ = '糖衣豆豆' #决策树 import pandas as pda fname="~/coding/python/data/lesson.csv" dataf=pda.read_csv(fname,encoding="gbk") x=dataf.iloc[:,1:5].as_matrix() y=dataf.iloc[:,5].as_matrix() for i in range(0,len(x)): for j in range(0,len…
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分.如今我们得到了每一个特征值得信息熵增益,我们依照信息熵增益的从大到校的顺序,安排排列为二叉树的节点.数据集和二叉树的图见下. (二叉树的图是用python的matplotlib库画出来的) 数据集:    决策树: 2.代码实现部分      由于上一节,我们通过chooseBestFeatureToSplit函数已经能够确定…
数据集如下: 色泽 根蒂 敲声 纹理 脐部 触感 好瓜 青绿 蜷缩 浊响 清晰 凹陷 硬滑 是 乌黑 蜷缩 沉闷 清晰 凹陷 硬滑 是 乌黑 蜷缩 浊响 清晰 凹陷 硬滑 是 青绿 蜷缩 沉闷 清晰 凹陷 硬滑 是 浅白 蜷缩 浊响 清晰 凹陷 硬滑 是 青绿 稍蜷 浊响 清晰 稍凹 软粘 是 乌黑 稍蜷 浊响 稍糊 稍凹 软粘 是 乌黑 稍蜷 浊响 清晰 稍凹 硬滑 是 乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑 否 青绿 硬挺 清脆 清晰 平坦 软粘 否 浅白 硬挺 清脆 模糊 平坦 硬滑 否 浅白…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def load_data(): ''' 加载用于分类问题的数据集.数据集采用 scikit-…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def creat_data(n): np.random.seed(0) X = 5 * np…
决策树的定义 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别.使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果. 树是由节点和边两种元素组成的结构.理解树,就需要理解几个关键词:根节点.父节点.子节点和叶子节点. 父节点和子节点是相对的,说白了子节点由父节点根据某…
决策树 -- 简介         决策树(decision tree)一般都是自上而下的来生成的.每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树. 决策树是一种有监管学习的分类方法.决策树的生成算法有 ID3 .C4.5 和 CART(Classification And Regression Tree)等,CART的分类效果一般优于其他决策树.         决策树的决策过程需要从决策树的根节点开始,待测数据与决策树…
简介 CART树即分类回归树(classification and regression tree),顾名思义,它即能用作分类任务又能用作回归任务,它的应用比较广泛,通常会用作集成学习的基分类器,总得来说,它与ID3/C4.5有如下不同: (1)它是一颗二叉树: (2)特征选择的方法不一样,CART分类树利用基尼系数做特征选择,CART回归树利用平方误差做特征选择: 接下来,分别对CART分类树和回归树做介绍 CART分类树 首先介绍特征选择方法,基尼系数: \[Gini(p)=\sum_{k=…
一.Predict survival on the Titanic 使用泰坦尼克号上的乘客数据,对乘客是否存活进行预测 1.观察数据集合 可能遇到的问题 训练集和测试集特征值得属性并不重合.连续属性和离散属性并存,属性值缺失时的分类.…