SSD笔记】的更多相关文章

参考:https://zhuanlan.zhihu.com/p/24954433?refer=xiaoleimlnote http://blog.csdn.net/u010167269/article/details/52563573…
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针对不同大小的目标检测,传统的做法是先将图像转换成不同大小(图像金字塔),然后分别检测,最后将结果综合起来(NMS).而SSD算法则利用不同卷积层的 个).最后将前面三个计算结果分别合并然后传给loss层. 二. Default box 文章的核心之一是作者同时采用lower和upper的featur…
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针对不同大小的目标检测,传统的做法是先将图像转换成不同大小(图像金字塔),然后分别检测,最后将结果综合起来(NMS).而SSD算法则利用不同卷积层的 feature map 进行综合也能达到同样的效果.文章的核心之一是同时采用lower和upper的feature map做检测.          …
R-FCN.SSD.YOLO2.faster-rcnn和labelImg实验笔记 转自:https://ask.julyedu.com/question/7490 R-FCNpaper:https://arxiv.org/abs/1605.06409作者代码:https://github.com/daijifeng001/R-FCN #matlab版本这里使用python版本的代码:https://github.com/Orpine/py-R-FCN 1.下载代码git clone https:…
SSD代码笔记 + EifficientNet backbone 练习 ssd代码完全ok了,然后用最近性能和速度都非常牛的Eifficient Net做backbone设计了自己的TinySSD网络,没有去调参,所以网络并没有很好的收敛,之后我会调一调,实际去应用. torch.clamp torch.clamp(input, min, max, out=None) → Tensor 就是clip的功能 eg: >>> a = torch.randn(4) >>> a…
R-FCN.SSD.YOLO2.faster-rcnn和labelImg实验笔记 转自:https://ask.julyedu.com/question/7490 R-FCN paper:https://arxiv.org/abs/1605.06409 作者代码:https://github.com/daijifeng001/R-FCN #matlab版本 这里使用python版本的代码:https://github.com/Orpine/py-R-FCN 1.下载代码 git clone ht…
磁盘文件I/O过程 进程向内核发起read scene.dat请求: 内核根据inode获取对应该进程的address space,在address space查找page_cache,如果没有找到,内核分配一个page加到内存页: 第一次拷贝:读取scene.dat文件相应的页填充页缓存中的页 : 第二次拷贝:内核将page_cahce中的page拷贝到用户进程的堆空间内存: 拷贝完成后,物理内存有两份拷贝(一份在page_cache,一份在用户的堆空间),如图:常规读文件必须从内核空间的pa…
论文源址:https://arxiv.org/abs/1512.02325 tensorflow代码:https://github.com/balancap/SSD-Tensorflow 摘要 SSD也为单阶段的网络,在feature map的每个feature map像素上生成一系列不同尺寸与大小的默认框,预测时,网络输出的分数代表每个默认框中目标物的类别,同时,调整框的大小与目标物的外形更加匹配.针对不同尺寸大小的物体,网络结合不同的网络层(具有不同的分辨率)的预测值.相对于提取目标prop…
转载自:https://zhuanlan.zhihu.com/p/33544892 前言 目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-stage方法,如R-CNN系算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一系列稀疏的候选框,然后对这些候选框进行分类与回归,two-stage方法的优势是准确度高:(2)one-stage方法,如Yolo和SSD,其主要思路是均匀地在图片的不同位置…
不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. •   RCNN RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化. 算法可以分为四步:         1)候选区域选择 Region P…