在使用中一直知其然不知其所以然的地使用RDD.cache(),系统的学习之后发现还有一个与cache功能类似看起来冗余的persist 点进去一探究竟之后发现cache()是persist()的特例,persist可以指定一个StorageLevel.StorageLevel的列表可以在StorageLevel 伴生单例对象中找到: cache的源码: /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */…
下面来看看groupByKey和reduceByKey的区别: val conf = new SparkConf().setAppName("GroupAndReduce").setMaster("local") val sc = new SparkContext(conf) val words = Array("one", "two", "two", "three", "th…
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 和 An Architecture for Fast and General Data Processing on Large Clusters 这两篇论文. 这篇…