1.groupByKey的源代码 2.groupByKey的使用缺点 不使用groupByKey的主要原因:在大规模的数据下,数据分布不均匀的情况下,可能导致OOM 3.reduceByKey的源代码 4.使用reduceByKey的youdian 使用reduceByKey函数的主要原因是:reduceByKey中存在combiner…
groupBy 和SQL中groupby一样,只是后面必须结合聚合函数使用才可以. 例如: hour.filter($"version".isin(version: _*)).groupBy($"version").agg(countDistinct($"id"), count($"id")).show() groupByKey 对Key-Value形式的RDD的操作. 例如(取自link): val a = sc.paral…
在使用中一直知其然不知其所以然的地使用RDD.cache(),系统的学习之后发现还有一个与cache功能类似看起来冗余的persist 点进去一探究竟之后发现cache()是persist()的特例,persist可以指定一个StorageLevel.StorageLevel的列表可以在StorageLevel 伴生单例对象中找到: cache的源码: /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */…
区别: 1.map是对rdd中每一个元素进行操作 2.mapPartitions是对rdd中每个partition的迭代器进行操作 mapPartitions优点: 1.若是普通map,比如一个partition中有一万条数据,那么function要执行一万次,而使用mapPartions,一个task只执行一次function,function一次接收所有数据,只执行一次,性能高 2.若在map中需要频繁创建额外对象(如将rdd的数据通过jdbc写入数据库,map需要为每条数据创建一个链接,m…
下面来看看groupByKey和reduceByKey的区别: val conf = new SparkConf().setAppName("GroupAndReduce").setMaster("local") val sc = new SparkContext(conf) val words = Array("one", "two", "two", "three", "th…
最近在一个项目中做数据的分类存储,在spark中使用groupByKey后存入HBase,发现数据出现双份( 所有记录的 rowKey 是随机  唯一的 ) .经过不断的测试,发现是spark的运行参数配置的问题: spark.speculation=true , 将其改为false,问题就解决了.哎  , spark运行参数得修改要慎重...…
避免使用GroupByKey 我们看一下两种计算word counts 的方法,一个使用reduceByKey,另一个使用 groupByKey: val words = Array("one", "two", "two", "three", "three", "three") val wordPairsRDD = sc.parallelize(words).map(word =>…
groupByKey把相同的key的数据分组到一个集合序列当中: [("hello",1), ("world",1), ("hello",1), ("fly",1), ("hello",1), ("world",1)] --> [("hello",(1,1,1)),("word",(1,1)),("fly",(1))] r…
原文链接:在Spark中尽量少使用GroupByKey函数 为什么建议尽量在Spark中少用GroupByKey,让我们看一下使用两种不同的方式去计算单词的个数,第一种方式使用reduceByKey :另外一种方式使用groupByKey,代码如下: 01 # User: 过往记忆 02 # Date: 2015-05-18 03 # Time: 下午22:26 04 # bolg: http://www.iteblog.com 05 # 本文地址:http://www.iteblog.com/…
[groupByKey & reduceBykey 的区别] 在都能实现相同功能的情况下优先使用 reduceBykey Combine 是为了减少网络负载 1. groupByKey 是没有 Combine 过程,可以改变 V 的类型 List[] combineByKeyWithClassTag[CompactBuffer[V]](createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)…
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver program. Executor:为某Application运行在worker node上的一个进程.该进程负责运行Task,并负责将数据存在内存或者磁盘 上.每个Application都有自己独…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
一.前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖. Spark中的Stage其实就是一组并行的任务,任务是一个个的task . 二.具体细节 窄依赖 父RDD和子RDD partition之间的关系是一对一的.或者父RDD一个partition只对应一个子RDD的partition情况下的父RDD和子RDD partition关系是多对一的.不会有shuffle的产生.父RDD的一个分区去到子RDD的一个分区. 宽依赖 父RDD与子RDD partition之间的关系是一对多…
一:准备 1.源数据 2.上传数据 二:TopN程序编码 1.程序 package com.ibeifeng.bigdata.spark.core import java.util.concurrent.ThreadLocalRandom import org.apache.spark.{SparkConf, SparkContext} /** * 分组TopN:按照第一个字段分组:同一组中,按照第二个字段进行排序:每一组中,获取出现最多的前K个数据. * Created by ibf on 0…
窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为 一个父RDD的分区对应于一个子RDD的分区 两个父RDD的分区对应于一个子RDD 的分区. 宽依赖指子RDD的每个分区都要依赖于父RDD的所有分区,这是shuffle类操作 Stage: 一个Job会被拆分为多组Task,每组任务被称为一个Stage就像Map Stage, Reduce Stage.Stage的划分,简单的说是以shuffle和result这两种类型来划分.在Spark中有两类task,一类是shuffleMap…
一. 数据倾斜的现象 多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败. 二. 数据倾斜的原因 常见于各种shuffle操作,例如reduceByKey,groupByKey,join等操作. 数据问题 key本身分布不均匀(包括大量的key为空) key的设置不合理 spark使用问题 shuffle时的并发度不够 计算方式有误 三. 数据倾斜的后果 spark中一个stage的执行时间受限于最后那个执行完的task,因此运行缓慢的任务会拖累整个…
本文是从 IPython Notebook 转化而来,效果没有本来那么好. 主要为体验 IPython Notebook.至于题目,改成<在 IPython Notebook 中使用 Spark>也可以,没什么差别.为什么是 Spark?因为这两天在看<Spark 机器学习>这本书第 3 章,所以就顺便做个笔记. 简单介绍下,IPython notebook 对数据科学家来说是个交互地呈现科学和理论工作的必备工具,它集成了文本和 Python 代码.Spark 是个通用的集群计算框…
Spark中产生shuffle的算子 作用 算子名 能否替换,由谁替换 去重 distinct() 不能 聚合 reduceByKey() groupByKey groupBy() groupByKey() reduceByKey aggregateByKey() combineByKey() 排序 sortByKey() sortBy() 重分区 coalesce() repartition() 集合或者表操作 Intersection() Substract() SubstractByKey…
本文以WordCount为例, 画图说明spark程序的执行过程 WordCount就是统计一段数据中每个单词出现的次数, 例如hello spark hello you 这段文本中hello出现2次, spark出现1次, you出现1次. 先上完整代码: object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("WordCount"); val sc = new…
参考:http://www.raincent.com/content-85-11052-1.html 1.Application:Spark应用程序 指的是用户编写的Spark应用程序,包含了Driver功能代码和分布在集群中多个节点上运行的Executor代码. Spark应用程序,由一个或多个作业JOB组成,如下图所示: 2.Driver:驱动程序 Driver负责运行Application的Main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备S…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题的第四篇文章,我们一起来看下Pair RDD. 定义 在之前的文章当中,我们已经熟悉了RDD的相关概念,也了解了RDD基本的转化操作和行动操作.今天我们来看一下RDD当中非常常见的PairRDD,也叫做键值对RDD,可以理解成KVRDD. KV很好理解,就是key和value的组合,比如Python当中的dict或者是C++以及Java当中的map中的基本元素都是键值对.相比于之前基本的RDD,pariRDD可以支持…
转自:https://blog.csdn.net/dmy1115143060/article/details/82620715 一.Spark数据分区方式简要 在Spark中,RDD(Resilient Distributed Dataset)是其最基本的抽象数据集,其中每个RDD是由若干个Partition组成.在Job运行期间,参与运算的Partition数据分布在多台机器的内存当中.这里可将RDD看成一个非常大的数组,其中Partition是数组中的每个元素,并且这些元素分布在多台机器中.…
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间看HaDoopRDD这个方法的源码,用来计算分区数量的) 物理切片:实际将数据切分开,即以前的将数据分块(每个数据块的存储地址不一样),hdfs中每个分块的大小为128m 逻辑切片:指的是读取数据的时候,将一个数据逻辑上分成多块(这个数据在地址上并没有分开),即以偏移量的形式划分(各个Task从某个…
Spark中的shuffle是在干嘛? Shuffle在Spark中即是把父RDD中的KV对按照Key重新分区,从而得到一个新的RDD.也就是说原本同属于父RDD同一个分区的数据需要进入到子RDD的不同的分区. 但这只是shuffle的过程,却不是shuffle的原因.为何需要shuffle呢? Shuffle和Stage 在分布式计算框架中,比如map-reduce,数据本地化是一个很重要的考虑,即计算需要被分发到数据所在的位置,从而减少数据的移动,提高运行效率. Map-Reduce的输入数…
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 和 An Architecture for Fast and General Data Processing on Large Clusters 这两篇论文. 这篇…
1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化.     Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象.     用户可以使用两种方法创建…
一.前述 Spark中Shuffle的机制可以分为HashShuffle,SortShuffle. SparkShuffle概念 reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,value>对的形式,这样每一个key对应一个聚合起来的value. 问题:聚合之前,每一个key对应的value不一定都是在一个partition中,也不太可能在同一个节点上,因为RDD是分布式的弹性的数据集,RDD的part…
一.前述 Spark中默认有两大类算子,Transformation(转换算子),懒执行.action算子,立即执行,有一个action算子 ,就有一个job. 通俗些来说由RDD变成RDD就是Transformation算子,由RDD转换成其他的格式就是Action算子. 二.常用Transformation算子 假设数据集为此: 1.filter      过滤符合条件的记录数,true保留,false过滤掉. Java版: package com.spark.spark.transform…
Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过程划分stage,而划分依据就是RDD之间的依赖关系.针对不同的转换函数,RDD之间的依赖关系分类窄依赖(narrow dependency)和宽依赖(wide dependency, 也称 shuffle dependency). 宽依赖与窄依赖 窄依赖是指父RDD的每个分区只被子RDD的一个分区所使用,子RDD分区通常对应常数个父RDD分区(O(1),与数据规模无关) 相应的,宽依赖是指父RDD的每个分区都可能被多个…