ML: 降维算法-LE】的更多相关文章

PCA的降维原则是最小化投影损失,或者是最大化保留投影后数据的方差.LDA降维需要知道降维前数据分别属于哪一类,而且还要知道数据完整的高维信息.拉普拉斯特征映射 (Laplacian Eigenmaps,LE)看问题的角度和LLE十分相似.它们都用图的角度去构建数据之间的关系.图中的每个顶点代表一个数据,每一条边权重代表数据之间的相似程度,越相似则权值越大.并且它们还都假设数据具有局部结构性质.LE假设每一点只与它距离最近的一些点相似,再远一些的数据相似程度为0,降维后相近的点尽可能保持相近.而…
局部线性嵌入 (Locally linear embedding)是一种非线性降维算法,它能够使降维后的数据较好地保持原有 流形结构 .LLE可以说是流形学习方法最经典的工作之一.很多后续的流形学习.降维方法都与LLE有密切联系. 如下图,使用LLE将三维数据(b)映射到二维(c)之后,映射后的数据仍能保持原有的数据流形(红色的点互相接近,蓝色的也互相接近),说明LLE有效地保持了数据原有的流行结构. 但是LLE在有些情况下也并不适用,如果数据分布在整个封闭的球面上,LLE则不能将它映射到二维空…
机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达, y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的.使用降维的原因: 压缩数据以减少存储量. 去除噪声的影响 从数据中提取特征以便于进行分类 将数据投影到低维可视空间,以便于看清数据的分布 变量(特征)数量相对数据条数有可能过大,从而不符合某些模型的需求.打…
判别分析(discriminant analysis)是一种分类技术.它通过一个已知类别的“训练样本”来建立判别准则,并通过预测变量来为未知类别的数据进行分类.判别分析的方法大体上有三类,即Fisher判别.Bayes判别和距离判别. Fisher判别思想是投影降维,使多维问题简化为一维问题来处理.选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值.对这个投影轴的方向的要求是:使每一组内的投影值所形成的组内离差尽可能小,而不同组间的投影值所形成的类间离差尽可能大. Bayes判别…
        PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结构的技术.PCA通常用于高维数据集的探索与可视化.还可以用于数据压缩,数据预处理等.PCA可以把可能具有相关性的高维变量合成线性无关的低维变量,称为主成分( principal components).新的低维数据集会尽可能的保留原始数据的变量.PCA将数据投射到一个低维子空间实现降维.例如,二维数…
转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes 网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码:在此通过借鉴资料实现了一些经典降维算法的Demo(python),同时也给出了参考资料的链接. 降维算法 资料链接 展示 PCA https://blog.csdn.net/u013719780/article/details/78352262 https://blog.csdn.net/we…
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维…
sklearn LDA降维算法 LDA(Linear Discriminant Analysis)线性判断别分析,可以用于降维和分类.其基本思想是类内散度尽可能小,类间散度尽可能大,是一种经典的监督式降维/分类技术. sklearn代码实现 #coding=utf-8 import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklea…
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在生物信息学.信号处理.金融学.统计学等领域有重要应用,SVD都是提取信息的强度工具.在机器学习领域,很多应用与奇异值都有关系,比如推荐系统.数据压缩(以图像压缩为代表).搜索引擎语义层次检索的LSI等等.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 …
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…