『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍 『TensorFlow』SSD源码学习_其二:基于VGG的SSD网络前向架构 『TensorFlow』SSD源码学习_其三:锚框生成 『TensorFlow』SSD源码学习_其四:数据介绍及TFR文件生成 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理 『TensorFlow』SSD源码学习_其六:标签整理 『TensorFlow』SSD源码学习_其七:损失函数 『TensorFlow』SSD源码学习…
零.资料集合 知乎专栏:Bob学步 知乎提问:如何高效的学习 TensorFlow 代码?. 大佬刘光聪(Github,简书) 开源书:TensorFlow Internals,强烈推荐(本博客参考书) TensorFlow架构与设计:编程模型 TensorFlow架构与设计:概述 TensorFlow架构与设计:会话生命周期 TensorFlow架构与设计:图模块 TensorFlow架构与设计:OP本质论 TensorFlow架构与设计:变量初始化 大佬姚健(Github) 系列文章(图片?…
一.架构概览 TensorFlow 的系统结构以 C API 为界,将整个系统分为前端和后端两个子系统: 前端系统:提供编程模型,负责构造计算图: 后端系统:提供运行时环境,负责执行计算图,后端系统的设计和实现可以进一步分解为 4 层: 1. 运行层:分别提供本地模式和分布式模式,并共享大部分设计和实现; 2. 计算层:由各个 OP 的 Kernel 实现组成;在运行时,Kernel 实现执行 OP 的具     体数学运算; 3. 通信层:基于 gRPC 实现组件间的数据交换,并能够在支持 I…
一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feature map分别对应不同尺度的固定anchor 回归所有anchor对应的class和bounding box 网络结构简介 输入:300x300 经过VGG-16(只到conv4_3这一层) 经过几层卷积,得到多层尺寸逐渐减小的feature map 每层feature map分别做3x3卷积,…
Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dataset对象 # Select the dataset. # 'imagenet', 'train', tfr文件存储位置 # TFR文件命名格式:'voc_2012_%s_*.tfrecord',%s使用train或者test dataset = dataset_factory.get_datas…
Fork版本项目地址:SSD 作者使用了分布式训练的写法,这使得训练部分代码异常臃肿,我给出了部分注释.我对于多机分布式并不很熟,而且不是重点,所以不过多介绍,简单的给出一点训练中作者的优化手段,包含优化器选择之类的. 一.滑动平均 # =================================================================== # # Configure the moving averages. # ==========================…
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训练方法教程 一.API介绍 基础操作列表 『TensorFlow』0.x_&_1.x版本框架改动汇总 『TensorFlow』函数查询列表_数值计算 『TensorFlow』函数查询列表_张量属性调整 『TensorFlow』简单的数学计算 『TensorFlow』变量初始化 常用基础操作 『Ten…
建议比对『MXNet』第七弹_多GPU并行程序设计 一.tensorflow GPU设置 GPU指定占用 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 上面分配给tensorflow的GPU显存大小为:GPU实际显存*0.7. GPU模式禁用 import os os.environ…
MXNet文档 MXNet官方教程 持久化模型 框架介绍 『MXNet』第一弹_基础架构及API 『MXNet』第二弹_Gluon构建模型 『MXNet』第三弹_Gluon模型参数 『MXNet』第四弹_Gluon自定义层 『MXNet』第五弹_MXNet.image图像处理 『MXNet』第六弹_Gluon性能提升 『MXNet』第七弹_多GPU并行程序设计 『MXNet』第八弹_数据处理API_上 『MXNet』第九弹_分类器以及迁移学习DEMO 『MXNet』第十弹_物体检测SSD 『MX…
一.不含参数层 通过继承Block自定义了一个将输入减掉均值的层:CenteredLayer类,并将层的计算放在forward函数里, from mxnet import nd, gluon from mxnet.gluon import nn class CenteredLayer(nn.Block): def __init__(self, **kwargs): super(CenteredLayer, self).__init__(**kwargs) def forward(self, x)…