点击上方蓝字关注DolphinScheduler(海豚调度) |作者:代立冬 |编辑:闫利帅 回顾基础知识: 图的遍历 图的遍历是指从图中的某一个顶点出发,按照某种搜索方法沿着图中的边对图中的所有顶点访问一次且仅访问一次.         注意树是一种特殊的图,所以树的遍历实际上也可以看作是一种特殊的图的遍历 图的遍历主要有两种算法 广度优先搜索(Breadth First Search,BFS) 深度优先搜索的搜索策略是尽可能深地搜索一个图.基本思想是:首先访问图中某一未访问的顶点V1,然后由…
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前.通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列.简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序. 线性结构概念 总的来说,"线性结构"是一个有序数据元素的集合 线性结构满足以下特点: 集合中必存在唯一&…
Consider a town where all the streets are one-way and each street leads from one intersection to another. It is also known that starting from an intersection and walking through town's streets you can never reach the same intersection i.e. the town's…
[模板整合计划]图论-有向无环图 (DAG) 与树 一:[拓扑排序] 最大食物链计数 \(\text{[P4017]}\) #include<cstring> #include<cstdio> #include<queue> #define Re register int using namespace std; const int N=5003,M=5e5+3,inf=2e9,P=80112002; int n,m,x,y,o,ans,dp[N],ru[N],chu[…
1.拓扑排序 bfs 所有入度为0的先入选. 2.tarjan 1个点1个集合 3.暴力 一个点不能重新到达自己…
最小链覆盖 (最长反链) 最小链覆盖 \(=n-\) 最大匹配. 考虑首先每个点自成一条链,此时恰好有 \(n\) 条链,最终答案一定是合并(首尾相接)若干条链形成的. 将两点匹配的含义其实就是将链合并. 说明 Dilworth 定理:一个偏序集中的最长反链大小,等于其中最小不可重链覆盖大小. 对于可重最小链覆盖,先传递闭包,按照连通性建图做. DAG 最长反链对应的是可重最小链覆盖. [CTSC2008]祭祀…
题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105),每个点有两个值ai,bi(ai,bi<=109),count(i,j)表示从i走到j的方案数. 求mod 109+7的值. 题目思路: [拓扑][宽搜] 首先将式子拆开,每个点I走到点J的d[j]一次就加上一次ai,这样一个点被i走到的几次就加上几次ai,相当于count(i,j)*ai,最终只要求…
本文的目的是记录一些在学习贝叶斯网络(Bayesian Networks)过程中遇到的基本问题.主要包括有向无环图(DAG),I-Maps,分解(Factorization),有向分割(d-Separation),最小I-Maps(Minimal I-Maps)等.主要参考Nir Friedman的相关PPT. 1  概率分布(Probability Distributions) 令X1,...,Xn表示随机变量:令P是X1,...,Xn的联合分布(joint distribution).如果每…
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林. 在工程计划和管理方面的应用 除最简单的情况之外,几乎所有的工程都可分为若干个称作“活动”的子工程,并且这些子工程之间通常受着一定条件的约束,例如:其中某些子工程必须在另一些子工 程完成之后才能开始.对整个工程和系统,人们关心的是两方面的问题: 一是工程能否顺利进行,即工程流程是否“合理”: 二是…
一.效果图展示及说明 (图一) (图二) 附注说明: 1. 图例都是DAG有向无环图的展现效果.两张图的区别为第二张图包含了多个分段关系.放置展示图片效果主要是为了说明该例子支持多段关系的展现(当前也包括单独的节点展现,图例没有展示) 2.图例中的圆形和曲线均使用的是SVG绘制.之前考虑了三种方式,一种是html5的canvas,一种是原始的html DOM,再有就是SVG.不过canvas对事件的支持不是很好(记得之前看过一篇文章主要是通过计算鼠标定位是否在canvas上的某个区域来触发事件机…