机器学习系列算法1:KNN】的更多相关文章

一.前言 KNN 的英文叫 K-Nearest Neighbor,应该算是数据挖掘算法中最简单的一种. 先用一个例子体会下. /*请尊重作者劳动成果,转载请标明原文链接:*/ /* https://www.cnblogs.com/jpcflyer/p/11111817.html * / 假设,我们想对电影的类型进行分类,统计了电影中打斗次数.接吻次数,当然还有其他的指标也可以被统计到,如下表所示. 我们很容易理解<战狼><红海行动><碟中谍 6>是动作片,<前任…
思路:空间上距离相近的点具有相似的特征属性. 执行流程: •1. 从训练集合中获取K个离待预测样本距离最近的样本数据; •2. 根据获取得到的K个样本数据来预测当前待预测样本的目标属性值 三要素:K值选择/距离度量(欧式距离)/决策选择(平均值/加权平均) Knn问题:数据量大,计算量较大:解决方案:kd-tree kd-tree:计算方差,根据方差大的划分 伪代码实现: import numpy as np from collections import defaultdict class m…
一.KNN概述 K-(最)近邻算法KNN(k-Nearest Neighbor)是数据挖掘分类技术中最简单的方法之一.它具有精度高.对异常值不敏感的优点,适合用来处理离散的数值型数据,但是它具有 非常高的计算复杂度和空间复杂度,需要大量的计算(距离计算). 它的工作原理是:如果已经给定一个带有标签(分类)的数据集(训练集),对于每一个给定的没有标签(分类)的新向量,通过计算该向量与训练集中的每一个向量的距离, 选择前k个最小的距离,在k个距离中出现次数最多的标签(分类)则是新向量的标签(分类).…
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Learning in Action一书和Ng的公开课,当然仅有这些是远远不够的,更深入的研究分析可以参见其他国外的论文及站点,此处不再一一列举.机器学习更多的是建模应用,这里仅是一个概要总结,并归纳分析各种算法优缺点,这些都是要了如指掌并且非常熟悉的. 关于机器学习: 基本上目前互联网公司的机器学习/…
前言 在机器学习经典算法中,决策树算法的重要性想必大家都是知道的.不管是ID3算法还是比如C4.5算法等等,都面临一个问题,就是通过直接生成的完全决策树对于训练样本来说是“过度拟合”的,说白了是太精确了.由于完全决策树对训练样本的特征描述得“过于精确” ,无法实现对新样本的合理分析, 所以此时它不是一棵分析新数据的最佳决策树.解决这个问题的方法就是对决策树进行剪枝,剪去影响预测精度的分支.常见的剪枝策略有预剪枝(pre -pruning)技术和后剪枝(post -pruning )技术两种.预剪…
机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最近邻居算法,是一种分类算法. 算法的基本思想:假设已存在一个数据集,数据集有多个数值属性和一个标签属性,输入一个新数据,求新数据的标签. 步骤如下: 先将新数据拷贝n份,形成一个新的数据集: 逐行计算新数据集与原数据集的距离: 按距离长度排序后,统计前K个数据里,那个标签出现的次数最多,新数据就标记…
机器学习十大算法 之 kNN(一) 最近在学习机器学习领域的十大经典算法,先从kNN开始吧. 简介 kNN是一种有监督学习方法,它的思想很简单,对于一个未分类的样本来说,通过距离它最近的k个"邻居",来判断这个样本的类别.kNN也是一种lazy learning(不知道中文是啥)技术,训练代价小.分类代价大.算法的要点有四个: 训练集 k的取值 距离的衡量方式 决定未知样本类别的方式 尽管kNN理解和实现起来都很简单,但是在某些应用上仍然有较好的表现.Cover和Hart指出,在一些合…
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import operator from collections import Counter #KNN需要测试集,训练集,标签和k值 #测试集:你需要测试的数据 #训练集:给定的标准数据 #标签:每个标准数据的类别 #k值 :测试集和训练集相比较下前K个最相识的训练集的值 # 用KNN算法找出测试集的类别 #…
机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源码解析.测试作者:米仓山下时间:2018-10-21机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiong…
转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更聪明,更人性化的技术,机器学习. – 埃里克 施密特(谷歌首席执行官) 当计算从大型计算机转移至个人电脑再转移到云的今天,我们可能正处于人类历史上最关键的时期.之所以关键,并不是因为已经取得的成就,而是未来几年里我们即将要获得的进步和成就. 对我来说,如今最令我激动的就是计算技术和工具的普及,从而带…