MapReduce过程(包括Shuffle)详解】的更多相关文章

首先,map的输入数据默认一个一个的键值对,键就是每一行首字母的偏移量,值就是每一行的值了. 然后每一个输入的键值对都会用我们定义的map函数去处理,这里用wordcount来举例的话就是,每一个键值对的值都按对应的分隔符分隔成每一个单词作为输出的键,值都为1. 接着,进入mapshuffle阶段,map函数处理后的数据会被放到一个环形缓冲区中,当放置的环形缓冲区的容量(默认100MB,可自定义)达到阈值(默认80%,可自定义)时就会进入溢写, 在真正溢写到本地磁盘前,会对要溢写的数据进行分区(…
概述 1.MapReduce 中,mapper 阶段处理的数据如何传递给 reducer 阶段,是 MapReduce 框架中 最关键的一个流程,这个流程就叫 Shuffle 2.Shuffle: 数据混洗 ——(核心机制:数据分区,排序,局部聚合,缓存,拉取,再合并 排序) 3.具体来说:就是将 MapTask 输出的处理结果数据,按照 Partitioner 组件制定的规则分发 给 ReduceTask,并在分发的过程中,对数据按 key 进行了分区和排序 MapReduce的Shuffle…
MapReduce工作原理图文详解 1.Map-Reduce 工作机制剖析图: 1.首先,第一步,我们先编写好我们的map-reduce程序,然后在一个client 节点里面进行提交.(一般来说可以在Hadoop集群里里面的任意一个节点进行,只要该节点装了Hadoop并且连入了Hadoop集群) 2.job client 在收到这个请求以后呢,会找到JobTracker并且请求一个作业ID(Job ID).(根据我们的核心配置文件,可以很轻易的找到JobTracker) 3.通过HDFS 系统把…
不多说,直接上干货! 环境说明: 本地没有安装Oracle服务端,oracle服务端64位,是远程连接,因此本地配置PLSQL Developer64位. Oracle database使用在本机部署数据库的实体.用于创建数据库实例. Oracle client是用于连接其他机器的数据库,现在有免安装版本和PL/SQL配合使用的版本. Navicat是非常强大的,简洁的数据库可视化工具.而且可以适配多种数据库,使用非常方便. 需要下载: 1.oracle64位客户端instantclient  …
VBA的过程及参数详解 VBA中的过程(Procedure)有两种,一种叫函数(Function),另外一种叫子程序(Subroutine),分别使用Function和Sub关键字.它们都是一个可以获取参数.执行一系列语句.以及改变其参数的值的独立过程.而与 Function 过程不同的是:带返回值的 Sub 过程不能用于表达式. 这里主要介绍子程序的使用方法,同样这些方法也可以应用到Function上. 语法[Private | Public | Friend] [Static] Sub na…
MapReduce 里面的shuffle:描述者数据从map task 输出到reduce task 输入的这段过程 Shuffle 过程: 首先,map 输出的<key,value > 会放在内存中,内存有一定的大小,超过之后,会将内存里的东西溢写(spill) 到磁盘(disk)中 .在从内存溢写到磁盘的过程中,会有两个操作:分区(parttition),排序(sort).map结束之后,磁盘中会有很多文件 . 有很多小文件,需要将文件进行文件的合并,并且排序.map 中的一些map任务可…
Shuffle简介 Shuffle描述着数据从map task输出到reduce task输入的这段过程.shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量.因为在分布式情况下,reduce task需要跨节点去拉取其它节点上的map task结果.这一过程将会产生网络资源消耗和内存,磁盘IO的消耗.通常shuffle分为两部分:Map阶段的数据准备和Reduce阶段的数据拷…
通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用方通过SparkContext这个与集群的交互接口,在创建SparkContext时就完成了Application的注册,Master为其分配Executor:在应用方创建了RDD并且在这个RDD上进行了很多的Transformation后,触发action,通过DAGScheduler将DAG划分…
转自:http://www.uml.org.cn/mobiledev/201211221.asp 今天,我着重讲解下如下三个内容: measure过程 WRAP_CONTENT.MATCH_PARENT/FILL_PARENT属性的原理说明 xml布局文件解析成View树的流程分析. 希望对大家能有帮助.- - 分析版本基于Android 2.3 . 1.WRAP_CONTENT.MATCH_PARENT/FILL_PARENT 初入Android殿堂的同学们,对这三个属性一定又爱又恨.爱的是使…
此文承接Job流程:Mapper类分析.MapReduce为确保每个reducer的输入都按键排序,数据从map输出到reducer输入的这段过程成为Shuffle. map端 1).Spill溢写. 每个map()方法都将处理结果输出到一个环形内存缓冲区buf(100MB)中(mapreduce.task.io.sort.mb).一旦缓冲区的数据量达到阀值0.8(mapreduce.map.sort.spill. percent),就会启动一个后台线程将缓冲区的数据溢写(spill to di…