一.RSA与公钥加密系统的起源与影响. 为了更好地突出公钥加密系统相对私钥加密系统的优势,让我们从这两个问题开始: 这个世界上如果没有公钥加密系统会怎么样呢?全用私钥加密系统会出现什么问题呢? 首先,私钥密码系统中的密码,加密解密之间是存在共享性的,也就是说,会加密就能做到会解密,会解密也就能做到会加密. 如果私钥密码系统用来做数字签名,会发生什么呢?你只要告诉了别人验证你的数字签名的正确性方法(解密),就同时告诉了他们伪造这个数字签名的方法(加密).瞬间爆炸Orz. 其次,私钥加密系统需要有一…
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num…
Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6664    Accepted Submission(s): 3997 Problem Description Eddy's interest is very extensive, recently he is interested in prime…
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b.…
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num…
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是质数,否则\(n\)是合数. 代码 bool is_prime(int n){ if(n<2) return 0; int m=sqrt(n); for(int i=2;i<=m;i++){ if(n%i==0) return 0; } return 1; } 方法二.线性筛 用 \(O(n)\)…
#include<iostream> #include<cstdio> #include<queue> #include<cstring> #include<algorithm> #include<cmath> #include<cstdlib> #include<ctime> #define lson l, m, rt<<1 #define rson m+1, r, rt<<1|1 #…
步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d%n=1那么这个可能就是一个素数,然后再判断k=n-1(目前数学不好不明所以) (3)MR结束 ③编写check函数,传入一个参数.首先排除一些情况 (1)是2 3 7 61(int范围内完全可以判断的底数)如果是的话return true; (2)是偶数,1,3的倍数或5的倍数或7的倍数所有条件并起…
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是素数,则n至少有一个(1, sqrt(n) ]范围内的素数因子 定理3:定义f(n)为不大于n的素数的个数,则 f(n) 近似等于 n/ln(n) (ln为自然对数) ,具体请参考here 求不超过n的素数                         本文地址 算法1:埃拉托斯特尼筛法,该算法的…
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数,a与n互质,则an-1Ξ1(mod n).于是有人想过把它倒过来判断n是否为素数.首先,若a与n不互质,那么n为合数.所以只需要满足an-1Ξ1(mod n)即可,这个a干脆就让它等于2了.即判断2n-1Ξ1(mod n)是否成立.若不成立,那么n必定为合数.但成立时n就是素数吗?又有人找出了个数:…
判断正整数p是否是素数 方法一 朴素的判定   …
如何判断一个素是素数 效率很高的筛法 打个表 (素数的倍数一定是合数) 就可以解决问题. 筛选法的效率很高,但是遇到大素数就无能为力了. 米勒罗宾素性测试是一个相当著名的判断是否是素数的算法 核心为费马小定理: 假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p 的余数恒等于1. 逆推一下即p的 a^(p-1)%p !=1 (0<a<p) ,它一定是合数. 如果 a^(p-1)%p ==1 (0<a<p) 则它可能是合数可能是素数.概率算法…
何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重要的地位.通过比较各种素数测试算法和对Miller-Rabin算法进行的仔细研究,证明在计算机中构建密码安全体系时, Miller-Rabin算法是完成素数测试的最佳选择.通过对Miller-Rabin 算 法底层运算的优化,可以取得较以往实现更好的性能.[1]  随着信息技术的发展.网络的普及和电…
在做这道题之前,我们首先来尝试签到题. 签到题 我们定义一个函数:\(qiandao(x)\) 为小于等于 x 的数中与 x 不互质的数的个数.要求 \(\sum\limits _{i=l}^r qiandao(i)\) 容易发现 \(qiandao(x)\) 只需求 \(\phi(x)\),不互质的个数就是另外一半. 那么问题转化为了如何筛出区间 \(\phi\) 的值.考虑到值域最大只有 \(1e12\).并且区间长度小于一百万,所以可以尝试筛根号以内素数求解. 我们知道欧拉函数计算公式为…
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两个算法看懂了O(∩_∩)O~~ Miller–Rabin主要用到了费马小定理,即:设p是一个素数,a是一个正整数且p不整除a,则ap-1≡1(mod p).若x=b(n-1)/2,x2=bn-1≡1(mod n),如果n是一个素数,则x≡1(mod n)或者x≡-1(mod n).因此,一旦我们有bn-1≡1…
在以往判断一个数n是不是素数时,我们都是采用i从2到sqrt(n)能否整除n.如果能整除,则n是合数;否则是素数.但是该算法的时间复杂度为O(sqrt(n)),当n较大时,时间性能很差,特别是在网络安全和密码学上一般都是需要很大的素数.而从目前来看,确定性算法判断素数的性能都不好,所以可以用MC概率算法来解决,其中Miller Rabin算法就是其中的很经典的解决方法.下面首先介绍下相关的数学理论. 数学原理 Fermat小定理:若n是素数,则对所有1≤a≤n-1的整数a,有a^(n-1)mod…
定义: Miller Rabin算法是一个随机化素数测试算法,作用是判断一个数是否是素数,且只要你脸不黑以及常数不要巨大一般来讲都比\(O(\sqrt n)\)的朴素做法更快. 定理: Miller Rabin主要基于费马小定理: \[a ^ {p-1} \equiv 1 (mod p)\]其中\(p\)是质数. 于是就有闲得没事干的一群科学家们想,这个问题的逆命题是否成立呢? 逆命题:若对于任意\(a\),\(a ^ {p-1} \equiv 1 (mod p)\)都成立,那么\(p\)是质数…
用来干嘛的 ​   要判断一个数 \(n\) 是否为素数,最朴素直接的办法是以\(O(\sqrt n)\) 时间复杂度地从2到 \(\sqrt n\) 循环即可得到最准确的结果.但是如果在 \(n\) 比较大的情况下,时间花销就太大了.这时,我们可以选择牺牲一点点准确度,使用可爱的米勒-拉宾(Miller-Rabin)素性检验算法来判断质数.根据百度百科,使用快速幂运算,这个算法的时间复杂度是 \(O(k\log^3 n)\)的,\(k\)是我们设定对一个数的进行测试的次数.\(k\) 越大,判…
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Paradox 简单点说就是 在 1到100 内去一个数 ai ai==42的概率很小 但是如果取两个数 ai bi ai-bi==42 的概率就会变大 应用到找素因子上 就不用像试除法那样一个一个的试 但是如果枚举ai bi 显然也很slow 那么有一个非常好使(奇怪)的函数 f(x)=x*x+c 这…
伪素数: 如果存在和n互素的正整数a满足a^(n-1)≡1(mod n),则n是基于a的伪素数. 是伪素数但不是素数的个数是非常非常少的,所以如果一个数是伪素数,那么他几乎是素数. Miller_Rabbin素数测试:随机选k个a进行a^(n-1)≡1(mod n)测试,如果都满足则判断n是素数. a^(n-1)%mod用快速幂计算.对于大数相乘(两个大于int的数相乘),中间结果可能溢出,所以需要用快速幂思想进行乘法取模. Miller_Rabbin的出错率为2^(-k). //Miller…
引语:在数论中,对于素数的研究一直就很多,素数测试的方法也是非常多,如埃式筛法,6N±1法,或者直接暴力判(试除法).但是如果要判断比较大的数是否为素数,那么传统的试除法和筛法都不再适用.所以我们需要学习Miller_Rabin算法. 知识准备 + 算法推导: 1.威尔逊定理:若p是素数,则 (p-1) !≡ -1(mod p). 2.有趣的是,威尔逊定理的逆命题也是正确的:设n是正整数且 n ≥ 2 ,若 (n-1) !≡ -1(mod n),则n 是素数. 很多朋友可能在学习的时候会碰到威尔…
0.1 一些闲话 最近一次更新是在2019年11月12日.之前的文章有很多问题:当我把我的代码交到LOJ上,发现只有60多分.我调了一个晚上,尝试用{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 61, 24251, 2147483647, 998244353}这么一大串数作为基底,然后左改右改,总算过去了.特别感谢 @骗分过样例 的提醒,现在张贴的代码应该是值得信赖的了. 之前我的同学好像就指出过我的文章的很多问题.比如说我之前写到,Miller Rabin在…
朴素素数测试是O(x1/2)的,每一个数都测试下来就炸了 然而如果全部预处理的话才是做大死,时间空间各种炸(大约有1亿个数) 所以怎么平衡一下呢? 其实在预处理的时候可以只处理一半:把21474836471/2内的质数全部预处理出来(这些就是要用的全部质数),然后用这些质数线性筛一筛就能得到正解 = = 没了? 没了. 还是要吐槽一下数论题目虽然代码.题解都很好写,但我不相信我能在赛场上想到正解... #include <cstdio> #include <iostream> #d…
Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the…
题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这样的话我们只要对L/G进行质因数分解,找出最接近√(L/G)的因子p,最终结果就是a=p*G,b=L/p,对(L/G)就是套用Miller–Rabin和Pollard's rho了,刚开始Pollard's rho用的函数也是 f(x)=x^2+1,然后死循环了....改成f(x)=x^2+c(c<…
\(Miller Rabin\)总结: 这是一个很高效的判断质数的方法,可以在用\(O(logn)\) 的复杂度快速判断一个数是否是质数.它运用了费马小定理和二次探测定理这两个筛质数效率极高的方法. 费马小定理判质数: \(a^{p-1}\equiv1\mod p\) 这个定理在p为质数的时候是成立的,所以我们可以如果要判断p是否是质数,可以\(rand\)几个a值然后照着这个式子来算,如果算出来不是1那说明p一定不是质数. 但在我们的自然数中,如果照着这个式子算出来的答案为1,也是有可能不是质…
Senior PanⅡ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Problem Description Senior Pan had just failed in his math exam, and he can only prepare to make up for it. So he began a daily task with Master Dong, D…
费马定理的逆定理几乎可以用来判断一个数是否为素数,但是有一些数是判断不出来的,因此,Miller_Rabin测试方法对费马的测试过程做了改进,克服其存在的问题. 推理过程如下(摘自维基百科): 摘自另一篇博文(手动滑稽): 原理明白了,就直接上代码了(KuangBin大神的板子): 代码思路是, Miller_Rabin()函数随机选取 s 个a,a用做“基底” check() 函数是用来判断x是否等于1,也就是判断a是否是n的凭证. Mul_mod()函数是 快速乘 ,求 a^t % n 之后…
板题 Miiler-Robin素数测试 目前已知分解质因数以及检测质数确定性方法就只能\(sqrt{n}\)试除 但是我们可以基于大量测试的随机算法而有大把握说明一个数是质数 Miler-Robin素数测试基于以下两个原理: 费马小定理 即我们耳熟能详的 对于质数\(p\) \[a^{p - 1} \equiv 1 \pmod p\] 二次探测原理 对于质数\(p\),如果存在\(x\)满足 \[x^2 \equiv 1 \pmod p\] 那么\(x\)只能是\(1\)或者\(p - 1\)…
题目链接:http://poj.org/problem?id=1811 题目解析:2<=n<2^54,如果n是素数直接输出,否则求N的最小质因数. 求大整数最小质因数的算法没看懂,不打算看了,直接贴代码,以后当模版用. 数据比较大,只能先用Miller_Rabin算法进行素数判断. 在用Pollard_rho分解因子.   #include <iostream> #include <stdio.h> #include <string.h> #include…