POJ1006: 中国剩余定理的完美演绎   问题描述 人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天.一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好.通常这三个周期的峰值不会是同一天.现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期.然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现. 问题分析 首先我们要知道,任意两个峰值之间一定相距整数倍的周期.假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk…
问题描述 人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天.一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好.通常这三个周期的峰值不会是同一天.现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期.然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现. 问题分析 首先我们要知道,任意两个峰值之间一定相距整数倍的周期.假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk(T是周期,k是任意正整数).所以,三个峰值同…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 117973   Accepted: 37026 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 117973   Accepted: 37026 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
poj 1006 题的思路不是很难的,可以转化数学式: 现设 num 是下一个相同日子距离开始的天数 p,e,i,d 如题中所设! 那么就可以得到三个式子:( num + d ) % 23 == p: ( num + d ) % 28 == e: ( num + d ) % 33 == i: p,e,i,d 是我们输入的,那么我们需要求出num即可,为了方便,我们将num+d暂时作为一个整体!令x = num + d: 即:x % 23 == p: x % 28 == e: x % 33 ==…
中国剩余定理的非互质形式 任意n个表达式一对对处理,故只需处理两个表达式. x = a(mod m) x = b(mod n) km+a = b (mod n) km = (a-b)(mod n) 利用扩展欧几里得算法求出k k = k0(mod n/(n,m)) = k0 + h*n/(n,m) x = km+a = k0*m+a+h*n*m/(n,m) = k0*m+a (mod n*m/(n,m)) #include <cstdio> #include <cstring> #…
/* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而且被d1除,余数为1:(称为R1相对于d1的数论倒数) R1 . R2 . … . Rn是d1.d2.….dn-1的公倍数,而且被dn除,余数为1: D是d1.d2.….的最小公倍数: R是任意整数(代表倍数),可根据实际需要决定: 且d1..….必须互质,以保证每个Ri(i=1,2,…,n)都能求…
题目大意 略...有中文... 题解 就是解同余方程组 x≡(p-d)(mod 23) x≡(e-d)(mod 28) x≡(i-d)(mod 33) 最简单的中国剩余定理应用.... 代码: #include<iostream> #include<cstdio> using namespace std; void gcd(int a,int b,int &d,int &x,int &y) { if(!b) { d=a,x=,y=; } else { gcd…
裸题,没什么好说的 第一个中国剩余定理 写暴力都过了..可见这题有多水 代码: #include<iostream> #include<stdio.h> #include<math.h> #include<string> #include<map> #include<algorithm> using namespace std; #define MAX 200000000 #define ull unsigned long long…
蒟蒻并不会中国剩余定理 交的时候还出现了PE的错误 下面是AC代码 #include<iostream> #include<cstdio> using namespace std; int main() { ; cin>>p>>e>>i>>d; do{ ; *p+*e+*i-d+lcm)%lcm; ) ans=lcm; cout<<"Case "<<T++<<": th…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 139500   Accepted: 44772 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \times {p_n}$)的余数也确定了,反之亦然. 用表达式表示如下: \[\begin{array}{l}x \equiv {a_1}(\bmod {p_1})\\{\rm{     }} \vdots \\x \equiv {a_n}(\bmod {p_n})\end{array}\] 那么任何满足…
一,题意:右上角中文.二,思路: 1,由题意得出方程组 2,利用中国剩余定理求解 3,求出最小正整数三,步骤: 1,由题意得出方程组 (n+d) % 23 = p ; (n+d) % 28 = e ; (n+d) % 33 = i ; 2,中国剩余定理求解 i,从23和28的公倍数中找出x,且满足x%33 = 1 ,x=1288 ii,从23和33的公倍数中找出y,且满足y%28 = 1 ,y=14421 iii,从28和33的公倍数中找出z,且满足z%23 = 1 ,z=5544 iiii,s…
B - Biorhythms Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1006 Description 人生来就有三个生理周期,分别为体力.感情和智力周期,它们的周期长度为23天.28天和33天.每一个周期中有一天是高峰.在高峰这天,人会在相应的方面表现出色.例如,智力周期的高峰,人会思维敏捷,精力容易高度集中.因为三个周期的周长…
生理周期  简单模拟 对于超出23 * 28 * 33(21252)时进行求余运算即可. #include<stdio.h> int main() { //freopen("in.txt","r",stdin); ; ||b!=-||c!=-||d!=-)) { s=a; if(b>s) s=b; if(c>s) s=c; do { s++; }!=)|| ((s+d-b))%!= ||((s+d-c)%!=) ); ) s=s%; prin…
题目链接 [VJ传送门] 题目描述 给你\(a_1...a_n\)和\(m_1...m_n\),求一个最小的正整数\(x\),满足\(\forall i\in[1,n] \equiv a_i(mod \ mi)\). 分析 很显然,中国剩余定理无法解决\(m_i\)之间非互质的问题. 需要用\(exCRT\). 假设\(x\)是前\(k-1\)个方程推出来的答案,那么第一个方程可以直接得出自己的答案就是\(a_1\). 设\(M=lcm(m_1,m_2...m_{k-1})\),那么显然得到\(…
礼物 题意: 求\[C(n,m)\ \%\ p\] \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k]{p_i}^{c_i}\le 10^5.\) 注意到若\[p=\prod_{i=1}^{k}{p_i}^{c_i},则\forall i\in [1..k]{p_i}^{c_i}\le 10^5.\] 于是有一个经典套路就是,求出\(k\)组\(A_i=C(n,m)\% {p_i}^{c_i}\)…
Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4767   Description What? MMM is learning Combinatorics!? Looks like she is playing with the bell sequence now: bell[n] = number of ways to pa…
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个同余方程合并,具体会在下面提到. 但是,使用仍有限制,那就是\(x\)的系数必须为\(1\). 没关系,把它再扩展一下 题目及实现 洛谷题目传送门 题意分析 显然,如果我们能干掉所有龙,那么每一次使用的剑的攻击力是已知的,设为\(k\).那么对于每一条龙,攻击次数\(x\)必须满足\(kx\equi…
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条件的最小的x. 看起来很麻烦. 先找一个特殊情况:$m_1,m_2,...m_n$两两互质. 这个时候,构造$M=m_1*m_2*...m_n$; 令$M_i=M/m_i$; 所以,构造$n$个数,其中第$i$个数是除$i$之外的其他所有数的倍数,并且第$i$个数$mod m_i =1$ 即:$M_…
C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,…,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2(mod m2) … x≡ak(mod mk) 在0<=<m1m2…mk内有唯一解…
http://shuxueshi.jie.blog.163.com/blog/static/13611628820104179856631/ 这篇博客写的很棒! #include<stdio.h> #include<string.h> #include<stdlib.h> int main() { int a,b,c,t; int i,j; ; while(scanf("%d%d%d%d",&a,&b,&c,&t)!=…
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... \\ x \equiv b_n\ ({\rm mod}\ a_n)\end{cases}\] CRT戳这里 来一手数学归纳法 设已经求出前 \(k - 1\) 组的一个解 \(q\) 设 \(M = \prod_{i = 1}^{k - 1}a_{i}\) 我们知道前 \(k - 1\) 组的通解…
http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/article/details/52186204 这个博客提供了互质情况下的代码以及由此递推出的(另一个版本的)非互质情况下的代码. 假如给出m[n],a[n]分别代表要求的除数和余数: 互质情况下: ( 做n次 ) 对不包含m[i]的所有m求积 ( 互质的数的最小公倍数 ) , exgcd求出来逆元后…
扩展欧几里得算法 求逆元就不说了. ax+by=c 这个怎么求,很好推. 设d=gcd(a,b) 满足d|c方程有解,否则无解. 扩展欧几里得求出来的解是 x是 ax+by=gcd(a,b)的解. 对于c的话只需要x*c/gcd(a,b)%(b/d)即可,因为b/d的剩余系更小. 为什么这样呢? 设a'=a/d,b'=b/d 求出a'x+b'y=1的解,两边同时乘d,然后x也是ax+by=d的解, 然后因为b'的剩余系更小,所以%b’ 中国剩余定理是合并线性方程组的 中国余数定理 转化为一个线性…
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_s}}$ 然后,分别求出每个组合数模每个$p_i^{{k_i}}$的值,这里可以用扩展lucas定理求解,(以下其实就是扩展lucas定理的简略证明) 关于$C_n^m\% {p^k}$, $C_n^m = \frac{{n!}}{{m!(n - m)!}}$, 我们以$n=19,p=3,k=2$为…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 111285   Accepted: 34638 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv a_2 \pmod{m_2} \\ &... \\ x &\equiv a_n \pmod{m_n} \end{aligned} \right. \] \(m_1, m_2 , ... , m_n\)两两互质 令\(M = \prod_{i=1}^{n} m_i\),求\(x \mod M\)…
https://blog.csdn.net/shanshanpt/article/details/8724769 有中文题面,就不解释了. 妥妥的中国剩余定理没跑了. Java跑得慢,一点办法也没有,必须写正解,暴力居然TLE package poj.ProblemSet; import java.util.Scanner; public class poj1006 { public static final int MOD = 23 * 28 * 33; public static final…
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. 现在有方程组:中国剩余定理指出: 扩展中国剩余定理 在一般情况下,要求任两个数互质这个条件太苛刻了,CRT派不上用场,我们需要一个更具普遍性的结论,这就是EX-CRT.虽然是称为EX-CRT,但这个定…