自动微分方法(auto diff)】的更多相关文章

学习机器学习的同学在学习过程中会经常遇到一个问题,那就是对目标函数进行求微分,线性回归这类简单的就不说.复杂的如神经网络类那些求导过程的酸爽.像我还是那种比较粗心的人往往有十导九错,所以说自动求导就十分有必要了,本文主要介绍几种求导的方式.假设我们的函数为\(f(x,y)=x^2y+y+2\),目标是求出偏导\(\frac{\partial{f}}{\partial{x}}\)和\(\frac{\partial{f}}{\partial{y}}\).求导的方式主要分为以下几种 手动求导法(Man…
MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框架对标,旨在大幅度降低 AI 应用开发门槛,让人工智能无处不在. MindSpore 是一款支持端.边.云独立/协同的统一训练和推理框架.希望通过这款完整的软件堆栈,实现一次性算子开发.一致的开发和调试体验,以此帮助开发者实现一次开发,应用在所有设备上平滑迁移的能力. 原生支持 AI 芯片,全场景一…
本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$,以便应用于梯度下降等算法. 1.手工求导 该方法比较简单,就是自备纸笔,应用基本的求导规则,以及链式求导法则,人工求导.缺点是对于复杂函数容易出错.幸运的是,这一计算过程可由计算机…
作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代码生成.两种方式的原理都一样,链式法则. 不难想象,任何计算都可以由第1步到第k步的序列形式,其中第 i 步计算的输入,在之前的 i-1 步中已经计算(例如编译器生成的汇编指令序列).因此,任何计算都可以看作形式如下图左侧的复合函数.微积分中的链式法则告诉我们,符合函数的导数可写作下图右侧的形式(假…
现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SGD等进行优化更新.手动实现过backprop算法的同学应该可以体会到其中的复杂性和易错性,一个好的框架应该可以很好地将这部分难点隐藏于用户视角,而自动微分技术恰好可以优雅解决这个问题.接下来我们将一起学习这个优雅的技术:-).本文主要来源于陈天奇在华盛顿任教的课程CSE599G1: Deep Lea…
神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情. 而深度学习框架可以帮助我们自动地完成这种求梯度运算. Tensorflow一般使用梯度磁带tf.GradientTape来记录正向运算过程,然后反播磁带自动得到梯度值. 这种利用tf.GradientTape求微分的方法叫做Tensorflow的自动微分机制. 一,利用梯度磁带求导数 import tensorflow as tf import numpy as np # f(x) = a*x**2 +…
acm等算法比赛常用---对拍 以及sublime text3的文件自动更新插件auto refresh 对拍 对拍即程序自动对比正确程序的运行结果和错误程序的运行结果之间的差异 废话少说, 直接上操作步骤 : 1. 首先建立generator.cpp和data.txt 作用 : 生成测试数据 #include<bits/stdc++.h> using namespace std; int main(){ freopen("data.txt","w",s…
技术背景 在分子动力学模拟的过程中,考虑到运动过程实际上是遵守牛顿第二定律的.而牛顿第二定律告诉我们,粒子的动力学过程仅跟受到的力场有关系,但是在模拟的过程中,有一些参量我们是不希望他们被更新或者改变的,比如稳定的OH键的键长就是一个不需要高频更新的参量.这时就需要在一次不加约束的更新迭代之后(如Velocity-Verlet算法等),再施加一次约束算法,重新调整更新的坐标,使得规定的键长不会产生较大幅度的变更. 初始化坐标参数 为了实现LINCS这一算法,我们先初始化一组随机的坐标用于测试,比…
技术背景 当前主流的深度学习框架,除了能够便捷高效的搭建机器学习的模型之外,其自动并行和自动微分等功能还为其他领域的科学计算带来了模式的变革.本文我们将探索如何用MindSpore去实现一个多维的自动微分,并且得到该多元函数的雅可比矩阵. 函数形式与雅可比矩阵形式 首先我们给定一个比较简单的z关于自变量x的函数形式(其中y和I是一些参数): \[z_{i,j}(x)=y_ix_j \] 比如我们考虑一个3*3的z,我们最终需要计算的是这样一个雅可比矩阵: \[J_z(x)= \left[ \be…
得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导. 进行自动微分运算需要调用函数 torch::autograd::grad( outputs, // 为某个可微函数的输出 y=f(x) 中的 y inputs, // 为某个可微函数的输入 y=f(x) 中的 x grad_outputs,// 雅克比矩阵(此处计算 f'(x),故设置为1,且与x形状相同 ) retain_graph,// 默认值与 create_graph 相同,这里设置…