注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的方法来融合高斯分量.从对比结果可以看出,基于聚类的高斯混合模型的说话人识别相对于传统的高斯混合模型在识别率上有所提高. ------------------------------ 高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种. (1)单高斯模型: 为简单起见,阈值t的选取一般靠经验值…
EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这种问题中A的结果就是隐变量,我们只有最后一个硬币的结果,其中的隐变量无法观测,所以这种无法直接根…
EM算法一般表述:       当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计.在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤,因此称为EM算法. 如果所有数据Z是由可观測到的样本X={X1, X2,--, Xn}和不可观測到的样本Z={Z1, Z2,--, Zn}组成的,则Y = X∪Z.EM算法通过搜寻使所有数据的似然函数Log(L(Z; h))的期望值最大来寻找极大似然预计,注意此处的h…
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$转换为更加易于计算的$\sum_{i=1}^{n} \ln p\left(x_{i}, \theta_{2} | \theta_{1}\right)$,其中$\theta_2$可以取任意的先验分布$q(\theta_2)$.EM算法的推导过程如下:$$\begin{aligned…
极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值.然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此无法直接通过最大似然估计直接求参数值.EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计. 1.经典的三硬币模型 引入一个例子来说明隐变量存在的问题.假设有3枚硬币,分别记作A,B,C.这些硬币正面出现的概率分别是π,p,q.我们的实验过程如下,先投掷硬…
极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一.说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值.      我们先来假设这样一个问题:要求解人群(100人)中男女身高的分布,这里很明显有两种分布,男和女,但是事先我们并不知道他们服从哪种分布,而且…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in range(K): gsum.append(np.sum([gama[j,k] for j in range(n)])) return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+\ np.sum([[np.sum(gama[j,k]*(np.…
一.高斯混合模型概述 1.公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重.Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为θk=(μk, αk2),概率密度的表达式为: 高斯混合模型就是K个高斯分布的线性组合,它假设所有的样本可以分为K类,每一类的样本服从一个高斯分布,那么高斯混合模型的学习过程就是去估计K个高斯分布的概率密度Ø(y|θk),以及每个高斯分布的权重αk.每个观测样本出现的概率就表示为K个高斯分布概率的加…