aroundnp.around 返回四舍五入后的值,可指定精度. around(a, decimals=0, out=None) a 输入数组 decimals 要舍入的小数位数. 默认值为0. 如果为负,整数将四舍五入到小数点左侧的位置 · # -*- coding: utf-8 -*-"""@author: tz_zs"""import numpy as np n = np.array([-0.746, 4.6, 9.4, 7.447, 10…
原博客链接:https://blog.csdn.net/tz_zs/article/details/80775256 np.around: 四舍五入取整 n = np.array([-0.746, 4.6, 9.4, 7.447, 10.455, 11.555]) around1 = np.around(n) print(around1) # [ -1. 5. 9. 7. 10. 12.] np.floor: 向下取整 n = np.array([-1.7, -2.5, -0.2, 0.6, 1…
基本算术运算符+.-和*隐式关联着通用函数add.subtract和multiply 在数组的除法运算中涉及三个通用函数divide.true_divide和floor_division,以及两个对应的运算符/和// 1. 数组的除法运算 import numpy as np # divide函数在整数和浮点数除法中均只保留整数部分(python3中的np.divide == np.true_divide) a = np.array([2,6,5]) b = np.array([1,2,3])…
P问题.NP问题.NPC问题.NP难问题的概念 离入职尚有几天时间,闲来无事,将大家常见却又很容易搞糊涂的几个概念进行整理,希望对大家有所帮助.你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题了”之类的话.你要知道,大多数人此时所说的NP问题其实都是指的NPC问题.他们没有搞清楚NP问题和NPC问题的概念.NP问题并不是那种“只有搜才行”的问题,NPC问题才是.好,行了,基本上这个误解已经被澄清了.下面的内容都是在讲什么是P问题,什么是NP问题,什么是N…
numpy的基础运算中还有很多运算,我们这里再记录一些. 最小/大值索引 前面一篇博文中我们讲述过如何获得数组中的最小值,这里我们获得最小/大值的索引值,也就是这个最小/大值在整个数组中位于第几位. import numpy as np a = np.array([[10, 30, 15], [20, 5, 25]]) print("a=") print(a) print("最小值索引:", a.argmin()) print("最大值索引:",…
1. 数组的集合运算 1.1. 并集 np.union1d(a,b)计算数组的并集: In [1]: import numpy as np In [2]: a = np.array([1,2,3]) In [3]: b = np.array([3,4,5]) In [4]: np.union1d(a,b) Out[4]: array([1, 2, 3, 4, 5]) 1.2. 交集 np.intersect1d(a,b)计算数组的交集: In [10]: import numpy as np I…
numpy数组的运算 数组的乘法 >>> import numpy as np >>> arr=np.array([[1,2,3],[4,5,6]]) >>> arr array([[1, 2, 3], [4, 5, 6]]) >>> arr*arr array([[ 1, 4, 9], [16, 25, 36]]) 数组的减法 >>> arr-arr array([[0, 0, 0], [0, 0, 0]]) 数组…
1. tf.image.resize_and_crop(net, bbox, 256, [14, 14], name)  # 根据bbox的y1,x1,y2,x2获得net中的位置,将其转换为14*14,因此为[14, 14, 512], 256表示转换的个数,最后的维度为[256, 14, 14, 512] 参数说明:net表示输入的卷积层,bbox表示y1,x1,y2, x2的比例,256表示转换成多少个,[14, 14]表示转换的卷积,name表示名字 2. tf.slice(x, [0,…
横1. np.concatenate(list, axis=0) 将数据进行串接,这里主要是可以将列表进行x轴获得y轴的串接 参数说明:list表示需要串接的列表,axis=0,表示从上到下进行串接 2.np.hstack(list)  将列表进行横向排列 参数说明:list.append([1, 2]), list.append([3, 4])  np.hstack(list) , list等于[1, 2, 3, 4] 3. hasattr(optim, 'sgd') 判断optim.py中是…
import numpy as np #int16和int32内存少,int64内存大但精度高 a = np.array([1,23,4],dtype=np.int32) b = np.zeros((3,4),dtype=np.int16) c = np.arange(10,20,2) #定义一个三行四列的 d = np.arange(12).reshape((3,4)) e = np.linspace(1,10,20) #1和10分20段的数列 g = np.linspace(1,10,6).…