考虑枚举加油的位置,当确定某次在第$i$个位置加油后,且下一次到$j$加油,那么$i$到$j$必然会选择不超过$c_{i}$条边且最长的路径,记作$d_{i,j}$ 如果能求出$d_{i,j}$,再设$f_{q,i}$表示$q$元(恰好用完)从$i$出发的最长路,枚举$i$之后那一次加油点即可转移,由于$q\le n^{2}$,因此这里的复杂度为$o(n^{4})$ 接下来,对其求一次前缀max再二分,即可对询问做到$o(t\log_{2}q)$的复杂度 现在还有一个问题,考虑如何预处理最开始的…