NOIP 模拟 $29\; \rm 完全背包问题$】的更多相关文章

题解 \(by\;zj\varphi\) 一道 \(\rm dp\) 题. 现将所有种类从小到大排序,然后判断,若最小的已经大于了 \(\rm l\),那么直接就是一个裸的完全背包,因为选的总数量有限制. 设 \(\rm f_{i,j,k}\) 为选了前 \(\rm i\) 种物品,总数为 \(\rm j\),容量为 \(\rm k\),是否可行,转移很简单. 对于另一种情况,能构造出的最小差距就是 \(v_1\),那么只要记录一下模 \(\rm v_1\) 的值即可. 设 \(\rm f_{i…
题解 \(by\;zj\varphi\) 首先考虑,如果将一个点修改成了黑点,那么它能够造成多少贡献. 它先会对自己的子树中的答案造成 \(w_x\) 的贡献. 考虑祖先时,它会对不包括自己的子树造成 \(w_fa\) 的贡献. 那么思路很显然,直接暴力向上更新,若更新到一个祖先,它已经被更新过了,那么更新完它之后直接退出就行,因为再向上,一定已经被更新过了. 实现的过程用在 \(\rm dfs\) 序上建线段树即可. 这样,每个点最多被更新一次,在询问时,最多重复更新一个点,所以总复杂度为 \…
题解 \(by\;zj\varphi\) 观察这个序列,发现模数很小,所以它的循环节很小. 那么可以直接在循环节上做最长上升子序列,但是循环节中的逆序对会对拼接后的答案造成影响. 没有必要找逆序对个数,直接将循环节大小个拼接在一起即可. Code #include<bits/stdc++.h> #define ri register signed #define p(i) ++i namespace IO{ char buf[1<<21],*p1=buf,*p2=buf; #def…
\(noip模拟29\;solutions\) 这次考试给我最大的伤害,让我意识到了差距 这场考试可以说是非常的简单,就是简单到,看两眼,打个表就有结果了 但是呢?我考得非常的完蛋,只有30pts 据说上一届做这题随便切: 考完之后一看,这第一题第三题都有人切了,我就非常的伤心,但是把题都改过来之后 还是很开心,明天一定要好好考,今天的状态非常不好 明天提起精神A掉至少一道题!!!! \(T1\; 最长不下降子序列\) 确实,乍一看这题还是挺简单的,我说着我树状数组打的非常的熟练, 就个这玩意不…
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   Censoring 记忆的轮廓 雨天的尾巴 总分 1 板B 87 03:20:06 0 03:23:09 100 03:20:42 187 03:23:09 2   100 03:20:20 0 03:20:49 50 03:26:26 150 03:26:26 2   100 03:19:16…
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照下来.他想让这一段中每个人的身高成等比数列,展示出最萌身高差,但他发现这个太难办到了,于是他决定放低要求,让等比数列的每两项之间可以是不连续的(例如 2,4,16--).可他依然找不到满意的,便再次妥协,使这个等比数列可以是乱序的. 现在请在其中你找出最长的符合要求的一段,使得将这一段排序后为某个公…
题解 \(by\;zj\varphi\) 对于一个数,如果它二进制下第 \(i\) 位为 \(1\),那么 \(\rm x\) 在这一位选 \(1\) 的贡献就是和它不同的最高为为 \(i\) 的数的个数 这个东西很好搞,整一个 \(\rm 01trie\) 就行,每会插入的时候直接统计即可 但是如何求第 \(p\) 位,二分,但每回二分时 \(2^k\) 搜索一遍就超时了,\(\rm meet\;in\;the\;middle\) 发现每一位是相互独立的,也就是说它们之间是不会互相影响的,所以…
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 既眼瘸又脑残,NOIP这样后悔去吧! T1 n*m网格,有S种颜色. 按从上到下,从左到右的顺序涂色. 相邻的相同色块可得一份,问最大得分 n,S<=100000,m<=4 只有最多4列 1列:顺着涂 2列:先涂可以涂偶数个 3列:先涂%3=0的,然后一个%3=1和一个%3=2的组合,剩余的顺着涂…
又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1,不解释. 对于最大的数据,我们可以用exgcd求出一组特解,之后的通解为x+(b/gcd)*k, y+(a/gcd)*k. 求出正整数解的个数即可. 注意有很多特判,慢慢调试就好(改这题的时间比我改T3的时间都长) #include<bits/stdc++.h> #define m 65535…
T1第一眼觉得是网络流 看见4e6条边200次增广我犹豫了 O(n)都过不去的赶脚.. 可是除了网络流板子我还会什么呢 于是交了个智障的EK 还是用dijkstra跑的 居然有50分!$(RP--)$ T2题意不是很清楚,打的QJ算法也过不了大样例 于是题审错了,暴力写挂 除了有skyh那种人25其实也挺大众了.. T3,栈? 单向修改? 可以用前缀和? 主席树? 想了想能过 然后就放走了..放走了..$Let it Go..$ 脑子一抽先去打更难的前两题 最后1h才想起来T3的正解貌似不是很好…