模型泛化与岭回归与LASSO 模型正则化 模型正则化,简单来说就是限制参数大小 模型正则化是用什么思路来解决先前过拟合的由于过于拟合导致的曲线抖动(线性方程前的系数都很大) 线性回归的目标就是求一个最优解,让损失函数尽可能的小也就是使求出来的均方误差尽可能的小 如果过拟合的话,就会让theta系数过大,那么怎么限制呢,可以改变损失函数,加入模型正则化,将其加上所有thetai的平方和乘上一个常数(这个阿尔法是个新的超参数,代表着后面的式子在整个式子中的重要程度(占比)),变为 让式子中的thet…
一.基础理解 模型正则化(Regularization) # 有多种操作方差,岭回归只是其中一种方式: 功能:通过限制超参数大小,解决过拟合或者模型含有的巨大的方差误差的问题: 影响拟合曲线的两个因子 模型参数 θi (1 ≤ i ≤ n):决定拟合曲线上下抖动的幅度: 模型截距 θ0:决定整体拟合曲线上下位置的高低: 二.岭回归 岭回归(Ridge Regression):模型正则化的一种方式: 解决的问题:模型过拟合: 思路:拟合曲线上下抖动的幅度主要受模型参数的影响,限制参数的大小可以限制…
      多元线性回归模型 的最小二乘估计结果为 如果存在较强的共线性,即 中各列向量之间存在较强的相关性,会导致的从而引起对角线上的 值很大 并且不一样的样本也会导致参数估计值变化非常大.即参数估计量的方差也增大,对参数的估计会不准确. 因此,是否可以删除掉一些相关性较强的变量呢?如果p个变量之间具有较强的相关性,那么又应当删除哪几个是比较好的呢? 本文介绍两种方法能够判断如何对具有多重共线性的模型进行变量剔除.即岭回归和LASSO(注:LASSO是在岭回归的基础上发展的)     思想:…
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数,系数压缩趋近于0就可以认为舍弃该特征. 岭回归(Ridge Regression)和Lasso回归是在普通最小二乘线性回归的基础上加上正则项以对参数进行压缩惩罚. 首先,对于普通的最小二乘线性回归,它的代价函数是: 通过拟合系数β来使RSS最小.方法很简单,求偏导利用线性代数解方程组即可. 根据线…
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,这个约束项被叫做正则化项(regularizer).在线…
norm代表的是距离,两个向量的距离:下图代表的就是p-norm,其实是对向量里面元素的一种运算: 最简单的距离计算(规范)是欧式距离(Euclidean distance),两点间距离是如下来算的,属于L2-norm: 另外一种就是出租车距离(也称之为曼哈顿距离):这是一种1-norm: L1-norm对应的就是1-norm,L2-norm对应的是2-norm: 注意上面的x代表的是两个向量的差值,x=v1-v2:x1=v1[1]-v2[1]. 下面的就是岭回归(L2-norm)和Lasso回…
回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值是连续的,也就是说,回归模型更像是一个函数,该函数通过不同的输入,得到不同的输出. 那么,什么是线性回归,什么是非线性回归呢? 线性回归与非线性回归 前面说了,我们的回归模型是一个函数是吧,那么线性回归就是模型函数是由若干个基本函数线性加权得到的函数.也就是每一个基本函数前面都有一个权值来调和自己对…
机器学习-正则化(岭回归.lasso)和前向逐步回归 本文代码均来自于<机器学习实战> 这三种要处理的是同样的问题,也就是数据的特征数量大于样本数量的情况.这个时候会出现矩阵不可逆的情况,为什么呢? 矩阵可逆的条件是:1. 方阵 2. 满秩 X.t*X必然是方阵(nxmxmxn=nxn,最终行列数是原来的X矩阵的列数,也就是特征数),但是要满秩的话,由于线性代数的一个结论,X.t*X的秩不会比X大,而X的秩是样本数和特征数中较小的那一个,所以,如果样本数小于特征数的话,X.t*X就不会是可逆的…
参考:https://blog.csdn.net/Byron309/article/details/77716127     ----    https://blog.csdn.net/xbinworld/article/details/44276389 参考:https://blog.csdn.net/bitcarmanlee/article/details/51589143 1.首先介绍线性回归模型(多元)原理,模型可以表示为: 损失函数可以表示为: 这里的 1/2m 主要还是出于方便计算的…
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,…