Splay与FHQ-Treap】的更多相关文章

1.BST二叉搜索树 顾名思义,它是一棵二叉树. 它满足一个性质:每一个节点的权值大于它的左儿子,小于它的右儿子. 当然不只上面那两种树的结构. 那么根据性质,可以得到该节点左子树里的所有值都比它小,右子树的都比它大. 而平衡树都是基于BST的. 为什么叫做平衡树?对于数的操作可能会破坏BST的性质,这时会进行另外的操作,保持它的性质. 为什么要用BST?对于一棵BST,每一次的操作,都相当于进行一次二分,时间复杂度可以降到log级别. 这里写的是两个常用的平衡树. 2.Splay splay树…
Description 营业额统计 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额.分析营业情况是一项相当复杂的工作.由于节假日,大减价或者是其他情况的时候,营业额会出现一定的波动,当然一定的波动是能够接受的,但是在某些时候营业额突变得很高或是很低,这就证明公司此时的经营状况出现了问题.经济管理学上定义了一种最小波动值来衡量这种情况: 该天的最小波动值 当最小波动值越大…
这道题要求区间反转...好东西.. 对于Splay:把l-1旋到根,把r+1旋到根的右儿子,这样r+1的左儿子就是整个区间了,然后对这个区间打个tg 注意要插-Inf和Inf到树里面,防止越界,坐标要+1 #include<cstdio> #include<iostream> #define R register int using namespace std; ,Inf=0x3f3f3f3f; inline int g() { R ret=,fix=; register :fix…
今天翻了翻其他大佬的博客,发现自己有些...颓废... 有必要洗心革面,好好学习 序:正常的BST有可能退化,成为链,大大降低效率,所以有很多方法来保持左右size的平衡,本文将简单介绍Treap,Splay,替罪羊,FHQ Treap: 另:代码都是普通平衡树 1.Treap 树堆,在数据结构中也称Treap,是指有一个随机附加域满足堆的性质的二叉搜索树,其结构相当于以随机数据插入的二叉搜索树.其基本操作的期望时间复杂度为O(logn).相对于其他的平衡二叉搜索树,Treap的特点是实现简单,…
Splay Splay(伸展树)是一种二叉搜索树. 其复杂度为均摊\(O(n\log n)\),所以并不可以可持久化. Splay的核心操作有两个:rotate和splay. pushup: 上传信息,比如区间和.子树大小... rotate: rotate实现把一个节点\(x\)转到它的父亲\(y\)的位置. 假设\(x\)是\(y\)的左儿子. 那么旋转完之后,\(y\)就会变成\(x\)的右儿子. 那么\(x\)原来的右儿子的地方就被占了,我们就把它放到\(y\)的左儿子. 实际上就是把\…
Preface 关于那些比较基础的平衡树我想我之前已经介绍的已经挺多了. 但是像Treap,Splay这样的旋转平衡树码亮太大,而像替罪羊树这样的重量平衡树却没有什么实际意义. 然而类似于SBT,AVL,RBT这些高级的乱搞平衡树无论时思想还是码量都让人难以接受. 而且在许多复杂的问题中需要维护区间,但是Splay的维护区间对于我这个蒟蒻来说实在是学不会. 许多的原因综合起来,在加上CJJ dalao的偶然安利,我便结识了神奇的FHQ Treap,一眼本命平衡树的感觉. 所以NOIP结束以后立马…
传送门: 解题思路: 算是补坑了,这题除了Invert以外就可以树剖线段树解决了. 考虑Invert操作,延续先前树链剖分的做法,考虑先前算法的瓶颈. 最暴力的方法是暴力交换权值,然而这种方法忽略了当前树链剖分序的一个性质,那就是很多部分的树链是连续的,而且仅有$O(\lg n)$个区间. 考虑只有一个区间的做法,就很显然是区间翻转(这个不会搞的话你是怎么做到这道题的),于是,由于区间个数并不多,我们大胆猜想:正确的解法就是考虑翻如何转这些不连续区间 由于链区间具有一定的连续性,且我们需要翻转其…
话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一边最小的还小.因此时合并时只需要维护键值的堆性质即可.这样每一次比较根节点,如果x比y小那么y直接接到x的右子树即可(需要满足权值的平衡树性质):否则的话只需要反过来,把x接到y的左子树上.merge函数返回的值应当是合并完后的根节点. 分裂分为两种,排名和权值.然而我认为它们本质上是一样的.对于权…
原理 以随机数维护平衡,使树高期望为logn级别 不依靠旋转,只有两个核心操作merge(合并)和split(拆分) 因此可持久化 先介绍变量 ; int n; struct Node { int val,key,siz; //权值,随机权值,子树大小 ]; //左右儿子(0左1右) void res() { //清空该节点(用于删除) son[]=son[]=siz=val=key=; } } tree[N]; int ins; int mem[N],inm; //内存回收池 int root…
首先说一下, 这个东西可以搞一切bst,treap,splay所能搞的东西 pre 今天心血来潮, 想搞一搞平衡树, 先百度了一下平衡树,发现正宗的平衡树写法应该是在二叉查找树的基础上加什么左左左右右左右右的旋转之类的, 思路比较好理解,但是 代码量........ 一看就头大,, 然后,在洛谷翻题解的时候无意间看到了远航之曲发的一篇非常短小精悍的题解, 于是就学了一下 FHQ Treap 这个东西的学名应该是叫做fhq treap,应该是treap的强化版. 整个数据结构中只有两个操作: 1.…