题解 「ZJOI2018」历史】的更多相关文章

题目传送门 Description 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣. 这个世界有 \(n\) 个城市,这 \(n\) 个城市被恰好 \(n − 1\) 条双向道路联通,即任意两个城市都可以互相到达.同时城市 \(1\) 坐落在世界的中心,占领了这个城市就称霸了这个世界. 在最开始,这 \(n\) 个城市都不在任何国家的控制之下,但是随着社会的发展,一些城市会崛起形成国家并夺取世界的霸权.为了方便,我们标记第 \(i\) 个城…
「ZJOI2018」历史(LCT) \(ZJOI\) 也就数据结构可做了-- 题意:给定每个点 \(access\) 次数,使轻重链切换次数最大,带修改. \(30pts:\) 挺好想的.发现切换次数只跟子树中所有结点的 \(access\) 次数,可以树形 \(dp\).假设 \(x\) 有 \(m\) 个儿子,每个儿子的 \(access\) 次数为 \(A_i\),自己为 \(A_0\),问题转换成有 \(m+1\) 种颜色,问怎么使颜色不同的间隔最多.使 \(sum=\sum_{i=0}…
「ZJOI2018」历史 前置知识 \(\text{LCT}\) 维护子树信息,考虑辅助树上一个节点的子树信息只是其代表的这一段链的信息,设 \(S(u)\) 为节点 \(u\) 的子树信息,那么在辅助树上我们维护的是: \[ S(u)=S(lson)+S(rson)+val(u) \] 考虑它们的实际意义 \(lson\) 是 \(u\) 的父亲,\(rson\) 是 \(u\) 的重儿子,显然 \(S(lson)\) 是我们不需要的,而真正的辅助信息只算了节点本身和重儿子. 考虑按照这样算的…
题意 click here 题解 我们首先考虑答案是个什么样的东西, 不难 发现每个点可以单独计算它的贡献. 令每个点 \(i\) 崛起次数为 \(a_i\) . 假设一个点子树的 \(\sum a_i\) 分别为 \(b_1,b_2,\dots,b_k\) ,令 \(S = a_i + \sum b_j\) . 那么这个点的答案为 \[ \min (2(S - \max(\max\{b_j\}, a_i)), S - 1) \] 至于为什么是这样可以简单说明下: \(S - 1\) :显然是这…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣. 这个世界有 n 个城市,这 n 个城市被恰好 n-1 条双向道路联通,即任意两个城市都可以互相到达.同时城市 1 坐落在世界的中心,占领了这个城市就称霸了这个世界. 在最开始,这 n 个城市都不在任何国家的控制之下,但是随着社会的发展,一些城市会崛起形成国家…
LOJ 思路 第一眼看似乎没有什么思路,试着套个DP上去:设\(dp_x\)表示只考虑\(x\)子树,能得到的最大答案. 合并的时候发现只有\(x\)这个点有可能做出新的贡献,而做出新贡献的时候必然是两个来自不同子树的国家发生战争. 于是做法突然就明朗了起来:对于每个点\(x\),记\(s\)表示子树内的崛起次数.\(p\)表示最大子树的崛起次数(也有可能是\(x\)自己),那么它对答案的贡献就是 \[ \min(s-1,2(s-p)) \] 为什么?其实就是用其他子树消耗最大子树的一个过程.…
「ZJOI2018」胖(ST表+二分) 不开 \(O_2\) 又没卡过去是种怎么体验... 这可能是 \(ZJOI2018\) 最简单的一题了...我都能 \(A\)... 首先我们发现这个奇怪的图每个点扩展的是一个区间 \([L,R]\),然后我们就可以二分端点了. 一个点 \(x\) 扩展到点 \(y\) 至少要 \(|x-y|\) 的时间,所以我们把 \(a_i\) 排个序,在上面二分一个合法的区间使得 \(|x-a_l|\leq t\) 且 \(|x-a_r|\leq t\) 然后若能扩…
Loj #2529. 「ZJOI2018」胖 题目描述 Cedyks 是九条可怜的好朋友(可能这场比赛公开以后就不是了),也是这题的主人公. Cedyks 是一个富有的男孩子.他住在著名的 The Place(宫殿)中. Cedyks 是一个努力的男孩子.他每天都做着不一样的题来锻炼他的 The Salt (灵魂).这天,他打算在他的宫殿外围修筑一道城墙,城墙上有 \(n\) 座瞭望塔.你可以把城墙看做一条线段,瞭望塔是线段上的 \(n\) 个点,其中 \(1\) 和 \(n\) 分别为城墙的两…
link Description 桌面上摊开着一些卡牌,这是她平时很爱玩的一个游戏.如今卡牌还在,她却不在我身边.不知不觉,我翻开了卡牌,回忆起了当时一起玩卡牌的那段时间. 每张卡牌的正面与反面都各有一个数字,我每次把卡牌按照我想的放到桌子上,而她则是将其中的一些卡牌翻转,最后使得桌面上所有朝上的数字都各不相同. 我望着自己不知不觉翻开的卡牌,突然想起了之前她曾不止一次的让我帮她计算最少达成目标所需要的最少的翻转次数,以及最少翻转达成目标的方案数. (两种方式被认为是相同的当且仅当两种方式需要翻…
link Description 一个长度为 $ n $ 的大数,用 $ S_1S_2S_3 \ldots S_n $表示,其中 $ S_i $ 表示数的第 $ i $ 位,$ S_1 $ 是数的最高位,告诉你一些限制条件,每个条件表示为四个数 $ (l_1, r_1, l_2, r_2) $,即两个长度相同的区间,表示子串 $ S_{l_1}S_{l_1 + 1}S_{l_1 + 2} \ldots S_{r_1} $ 与 $ S_{l_2}S_{l_2 + 1}S_{l_2 + 2} \ld…
题目传送门 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利. 大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了. 同学们觉得要加强趣味性,所以要找一个同学扔很多很多次硬币,其他同学记录下正反面情况. 用 $ \texttt{H} $ 表示正面朝上, 用 $ \texttt{T} $ 表示反面朝上,扔很多次硬币后,会得到一个硬币序列.比如 $ \texttt{HTT} $ 表示第一次正面朝上,后两次反面朝上. 但扔到什么时候停止…
题目传送门 Description 作为泉岭精神的缔造者.信奉者.捍卫者.传承者,Pear决定印制一些教义问答手册,以满足泉岭精神日益增多的信徒.Pear收集了一些有关的诗选.语录,其中部分内容摘录在了[题目背景]里.这些语录是按出现的时间排好序的--Pear很喜欢这样的作风,于是决定在按时间排好序的基础上,选择部分语录,制作成若干本教义问答手册. 一共有N条语录.Pear决定从中选出某一段时间内的所有语录,在此基础上印制大小为L的若干本教义问答手册.Pear对印制的手册有如下要求: 1. 每本…
题目传送门 Description 现在有一个长度为 \(n\) 的字符串,将其划分为 \(k\) 段,使得这 \(k\) 段每一段的字典序最大子串中字典序最大的字符串字典序尽量小.求出这个字符串. \(n\le 10^5,k\le 15\) Solution1 \(\Theta(nk)\) 我们可以设 \(f_{i,j}\) 表示从右到左第 \(i\) 个字符已经划分成 \(j\) 段的最小答案. 我们可以得到转移式: \[f_{i,j}=\min\{\max(\max\{[n\to k],i…
题目传送门 题目大意 给出 \(M,k\) ,求出 \[\sum_{x|M}\sigma(x)^k \] 给出 \(P_i\),满足 \(n=\prod_{i=1}^{n}a_i^{P_i}\),其中 \(a_i\) 是第 \(i\) 个质数. 对于 \(45\%\) 的数据点满足 \(k\le 10^5\),对于其余数据点满足 \(k\le 12\) . 思路 首先你发现答案就是: \[\prod_{i=1}^{n}(\sum_{j=1}^{P_i+1}j^k) \] (因为约数个数是个积性函…
题目传送门 题目大意 给出 \(n\) 个圆,求它们并的面积大小. \(n\le 10^3\) 思路 如果您不会自适应辛普森法,请戳这里学习 其实我们发现,如果我们设 \(f(x)\) 表示 \(x=x\) 这条直线与所有圆的交的线段的长度,那么答案就是: \[\int^{+\infty}_{-\infty}f(x),dx \] 然后你发现 \(f(x)\) 可以在 \(\Theta(n)\) 的时间复杂度内解决,而实际上范围也达不到 \(\infty\),实际操作中直接取 \(2000\) 就…
小兔叽 \(\texttt{Link}\) 简单题意 有 \(n\) 个小木桩排成一行,第 \(i\) 个小木桩的高度为 \(h_i\),分数为 \(c_i\). 如果一只小兔叽在第 \(i\) 个小木桩上,她会获得 \(c_i\) 的分数:同时,如果 \((|i - j| \neq 1) \wedge (h_j < h_i) \wedge (\forall \min\{i, j\} < k < \max\{i, j\}, h_k < h_i)\),那么她可以从第 \(i\) 个小…
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 2019」异或粽子 「十二省联考 2019」字符串问题 「十二省联考 2019」春节十二响…
文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最难看懂的题目之一了- 首先把题目重新叙述一遍. 题目大致在说,你有一个 P×Q×RP\times Q\times RP×Q×R 的蛋糕,每个点有一个不客观度 v[i][j][k]v[i][j][k]v[i][j][k] ,现在你要把这个蛋糕切开. 切蛋糕的规则是什么呢? 首先我们解释一下: 对于每一…
「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 题目 考场经历+思考(伪正解) 正解 10:50 A.M. T3 树上的数 题目 考场经历+思考 正解 12:00 写了那么多场的模拟赛,这次终于是来真的了- 但是-写这篇博客心情复杂啊- 不说心情了-哎 Day 1 7:30 A.M. 很早就到了,但是到的时候发现其实很多人都到了- 心态感觉良好,…
(声明:图片来源于网络) 「NOIP2016」天天爱跑步 题解 题目TP门 题目 题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含\(n\)个结点和\(n-1\)条边的树,每条边连接两个结点,且任意两个结点存在一条路径互相可达.树上结点编号为从\(1\)到\(n\)的连续正整数. 现在有\(m\)个玩家,第\(i\)个玩家的起点为\(t_i\),终点为…
「NOIP2009」最优贸易 题解 题目TP门 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为\(1\)条. \(C\)国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同.但是,同一种商品在同一个城市的买入价和卖出价始终是相同的. 商人阿龙来到\(C\)国旅…
[题解]「P6832」[Cnoi2020]子弦第一次写月赛题解( 首先第一眼看到这题,怎么感觉要用 \(\texttt{SAM}\) 什么高科技的?结果一仔细读题,简单模拟即可. 我们不难想出,出现最多次的子串的长度必然是 \(1\),不管怎样,长度 \(\geqslant 2\) 的子串的出现次数都必然 \(\leqslant\) 长度为 \(1\) 的子串的出现次数. 这样我们就可以将题目描述变变: 给定字符串 \(\texttt{S}\),求 \(\texttt{S}\) 出现次数最多的字…
Content 现在有一个转换后的文本文件,以一个长度为 \(n\) 的字符串表示.请判断这个文件是用哪一种写的,详情请返回题面. 数据范围:\(n\leqslant 10^5\).字符串里面至少有一个用来表示换行符的现显式转义符. Solution 这道题目作为普及模拟赛的第一题挺良心的,虽然说没有 NOIP2018 普及组 T1 那么直接,但是也不难想到. 首先我们看到题目,发现解决此题的突破口是这个显式转义符. 然后再根据 \r 和 \n 出现的情况判断系统就是这样: \(\texttt{…
「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加,删点即可. 子任务4 目前可以支持在\(o(log(n) )\)的时间里动态加,删单点了. 容易想到莫队. 直接用multiset维护复杂度\(o(n \sqrt n log(n))\).(一脸不可过) 稍微优化一下 ​ 若使用cnt记录的话,是没法很好的删点的. ​ 对于目前要处理的块\([l,r…
题面 洛谷P6788 「EZEC-3」四月樱花 给定 \(n,p\),求: \[ans=\left(\prod_{x=1}^n\prod_{y|x}\frac{y^{d(y)}}{\prod_{z|y}(z+1)^2}\right)\bmod p \] 数据范围:\(1\le n\le 2.5\cdot 10^9\),\(9.9\cdot 10^8<p<1.1\cdot 10^9\). 蒟蒻语 一道题撑起一场月赛,良心又劲爆. 膜拜出题人 @SOSCHINA,@muxii. 蒟蒻解 开局一波猛…
「SDOI2016」征途 先浅浅复制一个方差 显然dp,可以搞一个 \(dp[i][j]\)为前i段路程j天到达的最小方差 开始暴力转移 \(dp[i][j]=min(dp[k][j-1]+?)(j-1\leq k\leq i-1)\)这咋写?还是需要转换一下 开始了,but题目的方差还需要m^2,很好 以下x为m天行走的平均值,s[i]为1~i段路的总路程 那么x可以算对吧:\(x=\frac{s[n]}{m}\) \[m\times \sum^m_{i=1}(x_i-x)^2\\ =m\ti…
来源 LCA 个人评价:lca求路径,让我发现了自己不会算树的直径(但是本人似乎没有用lca求) 1 题面 「APIO2010」巡逻 大意:有一个有n个节点的树,每条边权为1,一每天要从1号点开始,遍历所有的边,再回到1号点,每条道路都经过两次,为了减少需要走的距离,可以增加K\((1\leq K\leq 2)\)条新的边(可以自环),且每天必须经过这K条边正好一次,请计算最佳方案是总路程最小,并输出最小值 2 分析题面 因为K很小,所以我们可以试着手推一下每种情况 2.1 不加边 从1号点出发…
目测是个老问题了.随便一搜,网上各种总结过.这里不辞啰嗦,尽量简洁的备忘一下. 几个链接,有道云笔记链接,都是知乎上几个问题的摘录:阮一峰的日志,1-5 还是值得参考,但是之后的部分则混淆了 Windows Unicode 和更广泛意义上的 Unicode 的区别,前者最早是将 UCS-2 标准的编码称作 Unicode,win2k 之后则替换成了 UTF-16LE with BOM,但依然称作是 Unicode,terminology 层面的混淆极易坑人. 另外一个问题:为什么 UTF-8 不…
时不时就会在面试过程中碰到有候选人问 Facebook 是否采用 Scrum 之类的敏捷方法,偶尔也会有中国的朋友问及 Facebook 上线流程.我通常会简单说几句,然后说「如果你真感兴趣的话,去搜索 Chuck Rossi 在 Velocity 2012 San Fancisco 演讲的视频」.无论从 Scrum 的角度来看,还是大多数中国公司的上线流程来看,Facebook 的发布流程都显得很不一样,但其实又非常合理,看完那个视频你就明白了.尽管里面提到的内部工具都没有在 Facebook…
「luogu2569」[ZJOI2006]书架 题目大意 给定一个长度为 \(n\) 序列,序列中第 \(i\) 个元素有编号 \(a_i(a_i \in \Z \cap [1,n])\),需要支持五种操作: \(Top\) \(S\) --表示把编号为 \(S\) 的书放在最上面: \(Bottom\) \(S\)--表示把编号为 \(S\) 的书放在最下面: \(Insert\) \(S\) \(T\)--\(T \in \{-1,0,1\}\),若编号为 \(S\) 的书上面有 \(X\)…