矩阵QR分解】的更多相关文章

1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量  相互垂直,且模长为1: 如果将  orthonormal 向量按列组织成矩阵,矩阵为 Orthogonal 矩阵,满足如下性质: : 当 为方阵时,为其逆矩阵:当  为长方形矩阵时,为其左逆: 当矩阵 Q 为正交矩阵时,对向量变换变换前后点积不发生改变,,证明如下: ,当 x = y 时,有  . 对任意向量 b ,可以分解为一组正交向量的线性组合,,要求解系数x,可先写成矩阵形式:…
1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其中, Q 是一个标准正交方阵, R 是上三角矩阵. 2. QR 分解的求解 QR 分解的实际计算有很多方法,例如 Givens 旋转.Householder 变换,以及 Gram-Schmidt 正交化等等.每一种方法都有其优点和不足.上一篇博客介绍了 Givens 旋转和 Householder…
#include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <cassert> #include <ctime> class MclVector { public: int n; double *Mat; /** type=0: 列向量 type=1: 行向量 **/ int type; MclVector() { Mat=NU…
    从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在于将矩阵转化成正交矩阵和上三角矩阵的乘积,对应的分解公式是A=Q*R.正交矩阵有很多良好的性质,比如矩阵的逆和矩阵的转置相同,任意一个向量和正交矩阵的乘积不改变向量的2范数等等.QR分解可以用于求解线性方程组,线性拟合.更重要的是QR分解是QR算法的基础,可以用于各种特征值问题,所以QR分集的应用非…
主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现   一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积. QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础. 定义: 实数矩阵 A 的 QR 分解是把 A 分解为Q.R,这里的 Q 是正交矩阵(意味着 QTQ = I)而 R 是上三角矩阵.类似的,我们可以定义 A 的 QL, RQ 和 LQ 分解. 更一般的说,我…
转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积. QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础. 定义: 实数矩阵 A 的 QR 分解是把 A 分解为Q.R,这里的 Q 是正交矩阵(意味着 QTQ = I)…
将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质.   预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着重要的作用. 平面旋转 设 \(1 \leqslant i < j \leqslant n\),称 为平面旋转或者 Givens 旋转. 容易验证对任何一对指数 \(i,j,(1 \leqslant i < j \leqslant n)\) 以及任何参数 \(\theta \in [0,2\pi)…
QR分解: 有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法 具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6f9.html 迭代格式 实际在进行QR分解之前一般将矩阵化为上hessnberg矩阵(奈何这个过程比较难以理解,本人智商不够,就不做这一步了哈哈哈) 迭代终止条件 看了很多文章都是设置一个迭代次数,感觉有些不是很合理,本来想采用A(k+1)-A(k)的对角线元素的二范数来作为误差的,但是我有没有一…
一:矩阵LU分解 矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵:\(U\)是一个上三角矩阵. 比如\(A= \begin{bmatrix} 1 & 2 & 4 \\ 3 & 7 & 2 \\ 2 & 3 & 3 \\ \end{bmatrix}\),我们最终要分解成如下形式: \[A=L\cdot U = \begin{bmatrix} 1 & 0 & 0 \…
Multiple View Geometry in Computer Vision A.4.1.1 (page 579) 将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 $ R $ 与一个正交阵(orthogonal matrix) $ Q $ 的乘积.要求矩阵 $ A $ 的秩为3,即满秩. 所谓矩阵 $ Q $ 正交是指 $ Q^TQ=I $, $ Q $ 可以看作是一个旋转矩阵.此旋转矩阵由三个子旋转矩阵点乘而来,即 $ Q = Q_xQ_yQ_z $ .$…
"QR_H.m" function [Q,R] = QR_tao(A) %输入矩阵A %输出正交矩阵Q和上三角矩阵R [n,n]=size(A); E = eye(n); X = zeros(n,); R = zeros(n); P1 = E; :n- s = -sign(A(k,k))*norm(A(k:n,k)); R(k,k) = -s; w = [A(,)+s,A(:n,k)']'; else w = [zeros(,k-),A(k,k)+s,A(k+:n,k)']'; R(:…
1.Gram-Schmidt正交化 假设原来的矩阵为[a,b],a,b为线性无关的二维向量,下面我们通过Gram-Schmidt正交化使得矩阵A为标准正交矩阵: 假设正交化后的矩阵为Q=[A,B],我们可以令A=a,那么我们的目的根据AB=I来求B,B可以表示为b向量与b向量在a上的投影的误差向量: $$B=b-Pb=b-\frac{A^Tb}{A^TA}A$$   2.Givens矩阵与Givens变换 为Givens矩阵(初等旋转矩阵),也记作. 由Givens矩阵所确定的线性变换称为Giv…
摘自 推荐系统 https://www.cnblogs.com/lzllovesyl/p/5243370.html 一.SVD奇异值分解 1.SVD简介 SVD(singular value decomposition).其作用就是将一个复杂的矩阵分解成3个小的矩阵. 用一张图片表示SVD的结构 2.SVD计算 (1)特征值和特征向量 如果A为方阵则 一般我们会把W的这nn个特征向量标准化,此时W的nn个特征向量为标准正交基 这样我们的特征分解表达式可以写成 (2)当A是一般矩阵的时候 这样V和…
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解:  A = P*B*PT  当然也可以写成 A = QT*B*Q  其中B为对角元为A的特征值的对角矩阵,P=QT, 首先A得对称正定,然后才能在实数域上分解, >>> A = np.random.randint(-10,10,(4,4)) >>> A array([[ 6, 9, -10, -1], [ 5, 9, 5, -5], [ -8, 7, -4, 4], […
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去法,把左边的系数矩阵分解为一个单位下三角矩阵和一个上三角矩阵相乘的形式.这样,求解这个线性方程组就转化为求解两个三角矩阵的方程组.具体的算法细节这里不做过多的描述,有很多的教材和资源可以参考.这里推荐的参考读物如下: Numerical recipes C++,还有包括MIT的线性代数公开课. 2.…
n=4;%确定需要LU分解的矩阵维数 %A=zeros(n,n); L=eye(n,n);P=eye(n,n);U=zeros(n,n);%初始化矩阵 tempU=zeros(1,n);tempP=zeros(1,n);%初始化中间变量矩阵 A=[1 2 -3 4;4 8 12 -8;2 3 2 1;-3 -1 1 -4];%需要LU分解矩阵赋值 for p=1:n %将A矩阵赋值给U for q=1:n U(p,q)=A(p,q); end end jt=1;kt=0; for i=1:n-1…
有如下方程组 ,当矩阵 A 各列向量互不相关时, 方程组有位移解,可以使用消元法求解,具体如下: 使用消元矩阵将 A 变成上三角矩阵 , , 使用消元矩阵作用于向量 b,得到向量 c,, , Ax=b 消元后变为 ,即 , 由于  为上三角矩阵, 使用回带法即可求解方程组. 对矩阵  做如下运算 .在消元过程中,已知 ,如何求解  呢? 表示将矩阵A的第二行乘以 1 再加上矩阵A的第三行得到矩阵B的第三行,矩阵B的第一二行于矩阵A的第一二行保持一致.根据语义, 表示将矩阵B的第二行乘以 -1 再…
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解:A=CD  ,  A是m×n矩阵,C是m×4矩阵,D是4×n矩阵. 奇异值分解:A=UDVT 谱分解: 在求解线性方程组中,一个核心的问题就是矩阵的LU分解,我们将一个矩阵A分解为两个更加简单的矩阵的复合LU,其中L是下三角矩阵,U是阶梯形矩阵.下三角矩阵和上三角矩阵具有非常良好的性质:Lx=y…
在数值线性代数中,QR因子分解的思想比其他所有算法的思想更为重要[1].                                       --Lloyd N. Trefethen & David Bau, lll 在给出QR因子分解定理之前,先回顾两个知识点,一是正交矩阵(它的重要性在数值线性代数中似乎怎么强调都不过分),二是线性代数中的 Gram-Schmidt 正交化算法,这个算法是把一组线性无关的向量组alpha_1, ... ,alpha_n 转化为相互正交的向量组 q_1,…
生成 4行5列的数组,逐列逐行赋值x = array(1:20, dim= c(4,5)) 依据已知向量生成二维数组i = array(c(1:3,3:1,4:6,5:7), dim=c(3,4))也能够调整行列顺序 (3行4列变为4行3列)i = array (c(1:3,3:1,4:6,7:9), dim=c(4,3)) 数组a元素作为索引值操作数组bi为一个二维数组,x[i]为x[i[1,1]],x[i[1,2]]...x[i[1,n]]...x[i[2,1]],x[i[2,2]]...x…
参考链接:linux下安装blas和lapack BLAS 和 LAPACK 这两个数学库是很多 Linux 科学计算软件需要调用的,所以经常会用到. LAPACK,其名为Linear Algebra PACKage的缩写,是一以Fortran编程语言编写,用于数值计算的函式集.LAPACK提供了丰富的工具函式,可用于诸如解多元线性方程式.线性系统方程组的最小平方解.计算特征向量.用于计算矩阵QR分解的Householder转换.以及奇异值分解等问题. LAPACK的源码可以从http://ww…
R语言矩阵运算 主要包括以下内容:创建矩阵向量:矩阵加减,乘积:矩阵的逆:行列式的值:特征值与特征向量:QR分解:奇异值分解:广义逆:backsolve与fowardsolve函数:取矩阵的上下三角元素:向量化算子等. 1   创建一个向量在R中可以用函数c()来创建一个向量,例如:> x=c(1,2,3,4)> x[1] 1 2 3 4 2   创建一个矩阵在R中可以用函数matrix()来创建一个矩阵,应用该函数时需要输入必要的参数值.> args(matrix)function (…
一.算法原理 请参考我在大学时写的<QR方法求矩阵全部特征值>,其包含原理.实例及C语言实现:http://www.docin.com/p-114587383.html 二.源码分析 这里有一篇文章<使用MapRedece进行QR分解的步骤>可以看看 /** For an <tt>m x n</tt> matrix <tt>A</tt> with <tt>m >= n</tt>, the QR decom…
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x'Ax>0,则称矩阵A 是正定的.正定矩阵的行列式必然大于 0, 所有特征值也必然 > 0.相对应的,半正定矩阵的行列式必然 ≥ 0.   QR分解 矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵的乘积的形式. 任意实数方阵A,都能被分解为A=QR.这里的Q为正交单位阵…
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出更有意思的信息.奇异值分解( SVD, Singular Value Decomposition ) 在计算矩阵的伪逆( pseudoinverse ),最小二乘法最优解,矩阵近似,确定矩阵的列向量空间,秩以及线性系统的解集空间都有应用. 1. SVD 的形式 对于一个任意的 m×n 的矩阵 A,S…
矩阵分解 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积. 1.三角分解法: 要求原矩阵为方阵,将之分解成一个上三角形矩阵(或是排列(permuted) 的上三角形矩阵)和一个下三角形矩阵,简称LU分解法. 注意:这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同的一对上下三角形矩阵. MATLAB: [L,U]=lu(A),A为方阵,L为下三角矩阵,U为上三角矩阵. 2.QR分解法: A为任意矩阵,将A矩阵分解成一个正规正交矩阵与上三…
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge which I have learned before is forgot...(呜呜) 1.Terminology 单位矩阵:identity matrix 特征值:eigenvalues 特征向量:eigenvectors 矩阵的秩:rank 对角矩阵:diagonal matrix 对角化矩阵…
 Apr 08, 2014  Categories in tutorial tagged with Mahout hadoop 协同过滤  Joe Jiang 前言:之前配置Mahout时测试过一个简单的推荐例子,当时是在Eclipse上运行的,由于集成插件的缘故,所以一切进行的都比较顺利,唯一不足的是那是单机运行的,没有急于分布式系统处理.所以基于测试分布式处理环境的目的,下午找了一个实例来运行,推荐系统原型是一个电影评分的系统. 一.问题描述 对于协同过滤(Collaborative Fil…
在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib中,推荐算法这块只实现了基于矩阵分解的协同过滤推荐算法.而基于的算法是FunkSVD算法,即将m个用户和n个物品对应的评分矩阵M分解为两个低维的矩阵:$$M_{m \times n}=P_{m \times k}^TQ_{k \times n}$$ 其中k为分解成低维的维数,一般远比m和n小.如果大…