视觉SLAM漫谈 (三): 研究点介绍】的更多相关文章

1. 前言 读者朋友们大家好!(很久很久)之前,我们为大家介绍了SLAM的基本概念和方法.相信大家对SLAM,应该有了基本的认识.在忙完一堆写论文.博士开题的事情之后,我准备回来继续填坑:为大家介绍SLAM研究的方方面面.如果前两篇文章算是"初识",接下来几篇就是"渐入佳境"了.在第三篇中,我们要谈谈SLAM中的各个研究点,为研究生们(应该是博客的多数读者吧)作一个提纲挈领的摘要.然后,我们再就各个小问题,讲讲经典的算法与分类.我有耐心讲,你是否有耐心听呢? 在&l…
      首页 视界智尚 算法技术 每日技术 来打我呀 注册     SLAM系统的研究点介绍 本文主要谈谈SLAM中的各个研究点,为研究生们(应该是博客的多数读者吧)作一个提纲挈领的摘要.然后,我们再就各个小问题,讲讲经典的算法与分类. 1. 前言 在<SLAM for Dummy>中,有一句话说的好:”SLAM并不是一种算法,而是一个概念.(SLAM is more like a concept than a single algorithm.)”所以,你可以和导师.师兄弟(以及师妹,如…
视觉SLAM漫谈 1.    前言 开始做SLAM(机器人同时定位与建图)研究已经近一年了.从一年级开始对这个方向产生兴趣,到现在为止,也算是对这个领域有了大致的了解.然而越了解,越觉得这个方向难度很大.总体来讲有以下几个原因: 入门资料很少.虽然国内也有不少人在做,但这方面现在没有太好的入门教程.<SLAM for dummies>可以算是一篇.中文资料几乎没有. SLAM研究已进行了三十多年,从上世纪的九十年代开始.其中又有若干历史分枝和争论,要把握它的走向就很费工夫. 难以实现.SLAM…
视觉SLAM漫谈(二):图优化理论与g2o的使用 1    前言以及回顾 各位朋友,自从上一篇<视觉SLAM漫谈>写成以来已经有一段时间了.我收到几位热心读者的邮件.有的希望我介绍一下当前视觉SLAM程序的实用程度,更多的人希望了解一下前文提到的g2o优化库.因此我另写一篇小文章来专门介绍这个新玩意. 在开始本篇文章正文以前,我们先来回顾一下图优化SLAM问题的提法.至于SLAM更基础的内容,例如SLAM是什么东西等等,请参见上一篇文章.我们直接进入较深层次的讨论.首先,关于我们要做的事情,你…
作者:吴艳敏 来源:83 项开源视觉 SLAM 方案够你用了吗? 前言 1. 本文由知乎作者小吴同学同步发布于https://zhuanlan.zhihu.com/p/115599978/并持续更新. 2. 本文简单将各种开源视觉SLAM方案分为以下 7 类(固然有不少文章无法恰当分类): ·Geometric SLAM ·Semantic / Learning SLAM ·Multi-Landmarks / Object SLAM ·VIO / VISLAM ·Dynamic SLAM ·Ma…
博客转载自:https://www.leiphone.com/news/201707/ETupJVkOYdNkuLpz.html 雷锋网(公众号:雷锋网)按:本文作者SLAMTEC(思岚科技公号slamtec-sh)技术顾问,专注SLAM及相关传感器研发应用. SLAM(同步定位与地图构建),是指运动物体根据传感器的信息,一边计算自身位置,一边构建环境地图的过程,解决机器人等在未知环境下运动时的定位与地图构建问题.目前,SLAM的主要应用于机器人.无人机.无人驾驶.AR.VR等领域.其用途包括传…
目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经典视觉SLAM框架 (3) SLAM问题的数学表述 一 视觉SLAM中的传感器 想象一个在室内的移动机器人在自由地探索室内的环境,那么定位与建图可以直观地理解成: (1) 我在什么地方?--定位 (2) 周围环境是怎样的?--建图 而要完成定位和建图则需要各种传感器的支持.传感器一般可以分为两类,一…
视觉SLAM技术应用 SLAM技术背景 SLAM技术全称Simultaneous localization and mapping,中文为"同时定位与地图构建".SLAM可以在未知的环境中实时定位自身的位置,并同时构建环境三维地图,是计算机视觉领域以及机器人领域中非常关键的一项技术,有着非常广泛的应用,例如VR.AR.机器人.自动驾驶等领域. SLAM技术在机器人领域应用广泛,可以采用各种各样的传感器,例如激光雷达,深度摄像头,单目.双目.多目摄像头,惯性传感器等等. 根据传感器的信息…
激光SLAM与视觉SLAM的特点 目前,SLAM技术被广泛运用于机器人.无人机.无人驾驶.AR.VR等领域,依靠传感器可实现机器的自主定位.建图.路径规划等功能.由于传感器不同,SLAM的实现方式也有所不同,按传感器来分,SLAM主要包括激光SLAM和视觉SLAM两大类. 其中,激光SLAM比视觉SLAM起步早,在理论.技术和产品落地上都相对成熟.基于视觉的SLAM方案目前主要有两种实现路径,一种是基于RGBD的深度摄像机,比如Kinect:还有一种就是基于单目.双目或者鱼眼摄像头的.视觉SLA…
视觉SLAM中的数学基础 第三篇 李群与李代数 前言 在SLAM中,除了表达3D旋转与位移之外,我们还要对它们进行估计,因为SLAM整个过程就是在不断地估计机器人的位姿与地图.为了做这件事,需要对变换矩阵进行插值.求导.迭代等操作.例如,在经典ICP问题中,给定了两组3D点,我们要计算它们之间的变换矩阵.假设第一组的3D点为$\mathbf{P}=\{ \mathbf{p}_i | i = [1,2, \ldots, N] \}$,第二组3D点为$\mathbf{Q}=\{ \mathbf{q}…