争议.流派,有关GAN的一切:Ian Goodfellow Q&A:https://baijiahao.baidu.com/s?id=1595081179447191755&wfr=spider&for=pc Ian Goodfellow主页:http://www.iangoodfellow.com/…
1. Ian Goodfellow之前是做神经科学研究,在斯坦福上了Andrew NG的课之后,Ian决定投身AI.在寒假他和小伙伴读了Hinton的论文,然后搭了一台用CUDA跑Boltzmann machine的电脑,然后他意识到深度学习是未来,因为他看了很多算法比如支持向量机,觉得它们不是那么靠谱. 2. Ian提出了生成对抗网络(GAN).他研究生成模型很久,非常了解其他框架的优缺点,像找一个可以同时避免所有现存算法缺点的算法.GAN是在有很多数据的基础上制造更多类似的数据. 3. 关于…
Deep Learning是大神Ian GoodFellow, Yoshua Bengio 和 Aaron Courville合著的深度学习的武功秘籍,涵盖深度学习各个领域,从基础到前沿研究.因为封面上有人工智能生成的鲜花图像,人送外号“花书” .该书系统地介绍了深度学习的基础知识和后续发展,是一本值得反复读的好书. 这里根据书的框架做笔记如下,方便以后回顾阅读,加油!!! 1.0  引言 什么是machine learning?在原始的AI系统中,定义不同的case使用不同的解决方法,这称为“…
Training Neural Networks: Q&A with Ian Goodfellow, Google Neural networks require considerable time and computational firepower to train. Previously, researchers believed that neural networks were costly to train because gradient descent slows down n…
1.结构图 2.知识点 生成器(G):将噪音数据生成一个想要的数据 判别器(D):将生成器的结果进行判别, 3.代码及案例 # coding: utf-8 # ## 对抗生成网络案例 ## # # # <img src="jpg/3.png" alt="FAO" width="590" > # - 判别器 : 火眼金睛,分辨出生成和真实的 <br /> # <br /> # - 生成器 : 瞒天过海,骗过判别器…
线性代数是机器学习的数学基础之一,这里总结一下深度学习花书线性代数一章中机器学习主要用到的知识,并不囊括所有线性代数知识. 2.1 基础概念 Scalars: 一个数: Vctors: 一列数: Matrices: 二位数组的数,每个元素由两个下标确定: Tensors: 多维数组的数. 2.2  矩阵计算 转置(transpose):(AT)i,j=Aj,i 矩阵乘法: C=AB, 元素乘法(element product; Hardamard product):A⨀B 点乘(dot prod…
转自:https://zhuanlan.zhihu.com/p/24767059,感谢分享 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-) 一.GAN原理介绍 说到GAN第一篇要看的paper当然是Ian Goodfellow大牛…
<麻省理工科技评论>公布了 2018 年全球十大突破性技术,“对抗性神经网络”即“生成对抗网络”作为突破性人工智能技术赫然上榜.这家全球最顶级科技杂志编辑部对这项革命性技术给出的评价是:它给机器带来一种类似想象力的能力,因此可能让它们变得不再那么依赖人类,但也把它们变成了一种能力惊人的数字造假工具. 实际上,这是一个青年科学家的故事:今年 33 岁的青年科学家 Ian Goodfellow 在过去数年中通过让神经网络互打擂台创造出了一款威力强大的 AI 工具.而如今,你.我.他都需要面对这一发…
最近在参加IJCAI-19阿里巴巴人工智能对抗算法竞赛(点击了解),初赛刚刚结束,防御第23名,目标攻击和无目标攻击出了点小问题,成绩不太好都是50多名,由于找不到队友,只好一个人跟一群大佬PK,双拳难敌四手,差点自闭放弃比赛了.由于知道对抗攻击的人很少,于是抽空写篇博客,简单科普一下人工智能与信息安全的交叉前沿研究领域:深度学习攻防对抗. 然后简单介绍一下IJCAI-19 阿里巴巴人工智能对抗算法竞赛 目前,人脸识别.自动驾驶.刷脸支付.抓捕逃犯.美颜直播……人工智能与实体经济深度结合,彻底改…
[重磅]无监督学习生成式对抗网络突破,OpenAI 5大项目落地 [新智元导读]"生成对抗网络是切片面包发明以来最令人激动的事情!"LeCun前不久在Quroa答问时毫不加掩饰对生成对抗网络的喜爱,他认为这是深度学习近期最值得期待.也最有可能取得突破的领域.生成对抗学习是无监督学习的一种,该理论由 Ian Goodfellow 提出,此人现在 OpenAI 工作.作为业内公认进行前沿基础理论研究的机构,OpenAI 不久前在博客中总结了他们的5大项目成果,结合丰富实例介绍了生成对抗网络…
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的神经网络只能解决关于辨识的问题,并不能够为机器带来自主创造的能力,例如让机器写出一篇流畅的新闻报道,生成一副美丽的风景画.但随着GAN的出现,这些都成为了可能. 什么是GAN? 生成式对抗网络(GAN, Generative Adversarial Networks)是一种近年来大热的深度学习模型,…
本文转载自:https://www.leiphone.com/news/201703/Y5vnDSV9uIJIQzQm.html 生成对抗网络(Generative Adversarial Networks,GAN)最早由 Ian Goodfellow 在 2014 年提出,是目前深度学习领域最具潜力的研究成果之一.它的核心思想是:同时训练两个相互协作.同时又相互竞争的深度神经网络(一个称为生成器 Generator,另一个称为判别器 Discriminator)来处理无监督学习的相关问题.在训…
最近,在全球安全领域的殿堂级盛会 DEF CON 2018 上,GeekPwn 拉斯维加斯站举行了 CAAD CTF 邀请赛,六支由国内外顶级 AI 学者与研究院组成的队伍共同探讨以对抗训练为攻防手段的 CTF.TSAIL 团队的庞天宇.杜超作为代表获得该项比赛的冠军,参加比赛的骨干成员还包括董胤蓬.韦星星等,TSAIL 团队来自于清华大学人工智能研究院,主要研究领域为机器学习. 同样在去年,该团队在 NIPS 2017 AI 对抗性攻防竞赛的三项比赛任务中(有/无特定目标攻击:攻击检测),全部…
 本文由  网易云发布. “知物由学”是网易云易盾打造的一个品牌栏目,词语出自汉·王充<论衡·实知>.人,能力有高下之分,学习才知道事物的道理,而后才有智慧,不去求问就不会知道.“知物由学”希望通过一篇篇技术干货.趋势解读.人物思考和沉淀给你带来收获的同时,也希望打开你的眼界,成就不一样的你.当然,如果你有不错的认知或分享,也欢迎通过邮件(zhangyong02@corp.netease.com)投稿. 以下是正文: 对于很多计算机程序,在黑客眼中,他们不是想享受这些程序提供的服务,而是想如何…
感觉好厉害,由上图噪声,生成左图噪声生成右图以假乱真的图片, gan网络原理: 本弱又盗了一坨博文,不是我写的,如下:(跪膜各路大神) 前面我们已经讲完了一般的深层网络,适用于图像的卷积神经网络,适用于序列的循环神经网络.但是要知道Lecun提出第一代卷积网络Lenet的时间是1998年,而循环神经网络提出的时间更早,是在1986年.这些网络在当时并没有火起来,如今随着计算能力的加强,数据集的增多,深度学习逐渐火了起来,随着越来越多的人的研究,各种各样的神经网络都在不断进步,CNN里面出现了in…
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡. B站上有一个关于”海滩2个兄弟卖雪糕“形成纳什均衡的视频,讲的很生动. 不管系统中的双方一开始处于什么样的状态,只要系统中参与竞争的个体都是”理性经济人“,即每个人在考虑其他人的可能动作的基…
注:本文来自机器之心的PaperWeekly系列:万字综述之生成对抗网络(GAN),如有侵权,请联系删除,谢谢! 前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian Goodfellow 或者自动化所王飞跃老师那篇.可是在深度学习,GAN领域,其进展都是以月来计算的,感觉那两篇综述有些老了.最近发现有一篇最新的 GAN 综述论文(How Generative Adversarial Networks and Their Variants Work: An Over…
NIPS 2018 | 程序翻译新突破:UC伯克利提出树到树的程序翻译神经网络 机器之心 ​ 已认证的官方帐号 49 人赞同了该文章 选自arXiv,作者:Xinyun Chen.Chang Liu.Dawn Song,机器之心编译,参与:Geek AI.张倩. 程序翻译是将一种语言的遗留代码迁移到用另一种语言构建的生态系统的重要工具.本文作者首次使用深度神经网络来解决程序翻译问题.他们观察到程序翻译是一个模块化的过程并据此设计了一个树到树的神经网络,将源树转换为目标树.与其他神经翻译模型相比,…
https://juejin.im/post/5d3fb44e6fb9a06b2e3ccd4e 生成对抗网络(GAN)是生成模型的一种神经网络架构. 生成模型指在现存样本的基础上,使用模型来生成新案例,比如,基于现存的照片集生成一组与其相似却有细微差异的新照片. GAN是使用两个神经网络模型训练而成的一种生成模型.其中一个称为"生成器"或"生成网络"模型,可学习生成新的可用案例.另一个称为"判别器"或"判别网络",可学习判别生…
来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy 五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起了一场革命.这场革命产生了一些重大的技术突破.Ian Goodfellow等人在"Generative Adversarial Networks"中提出了生成对抗网络.学术界和工业界都开始接受并欢迎GAN的到来.GAN的崛起不可避免. 首先,GAN最厉害的地方是它的学习性质是无监督的.GA…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]本文衔接上一个随笔:人工智能中小样本问题相关的系列模型演变及学习笔记(一):元学习.小样本学习 三.生成对抗网络 GAN 综述 说到小样本学习,就想说比较时髦的生成对抗网络GAN.别误会,生成对抗网络并不是只针对小样本生成,还有很多别的丰富应用. 1. GAN GANs是一种结构化的概率模型,由两个对立的模型组成:生成模型(G)用于捕获数据分布,判别模型(D)用…
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodfellow 在 14 年发表了 论文 Generative Adversarial Nets 以来,生成式对抗网络 GAN 广受关注,加上学界大牛 Yann Lecun 在 Quora 答题时曾说,他最激动的深度学习进展是生成式对抗网络,使得 GAN 成为近年来在机器学习领域的新宠,可以说,研究机器…
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结. 1. 从感知机到神经网络 在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图: 输出和输入之间学习到一个线性关系,得到中间输出结果:$$z=\sum\limits_{i=1}^mw_ix_i + b$$ 接着是一个神经元激活函数: $$sign(z)=\begin{cases}…
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向传播算法要解决的问题 在了解DNN的反向传播算法前,我们先要知道DNN反向传播算法要解决的问题,也就是说,什么时候我们需要这个反向传播算法? 回到我们监督学习的一般问题,假设我们有m个训练样本:$\{(x_1,y_1), (x_2,y_2), ..., (x_m,y_m)\}$,其中$x$为输入向量…
在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结.里面使用的损失函数是均方差,而激活函数是Sigmoid.实际上DNN可以使用的损失函数和激活函数不少.这些损失函数和激活函数如何选择呢?下面我们就对DNN损失函数和激活函数的选择做一个总结. 1. 均方差损失函数+Sigmoid激活函数的问题 在讲反向传播算法时,我们用均方差损失函数和Sigmoid激活函数做了实例,首先我们就来看看均方差+Sigmoid的组合有什么问题. 首先我们回顾下Sigmoid激…
和普通的机器学习算法一样,DNN也会遇到过拟合的问题,需要考虑泛化,这里我们就对DNN的正则化方法做一个总结. 1. DNN的L1&L2正则化 想到正则化,我们首先想到的就是L1正则化和L2正则化.L1正则化和L2正则化原理类似,这里重点讲述DNN的L2正则化. 而DNN的L2正则化通常的做法是只针对与线性系数矩阵$W$,而不针对偏倚系数$b$.利用我们之前的机器学习的知识,我们很容易可以写出DNN的L2正则化的损失函数. 假如我们的每个样本的损失函数是均方差损失函数,则所有的m个样本的损失函数…
在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结. 在学习CNN前,推荐大家先学习DNN的知识.如果不熟悉DNN而去直接学习CNN,难度会比较的大.这是我写的DNN的教程: 深度神经网络(DNN)模型与前向传播算法 深度神经网络(DNN)反向传播算法(BP) 深度…
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一篇里,我们已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用Softmax激活函数的输出层.这里我们用一个彩色的汽车样本的图像识别再从感官上回顾下CNN的结构.图中的CONV即为卷积层,POOL即为池化层,而FC即为DNN全连接层,包括了我…
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度神经网络(DNN)反向传播算法(BP) 1. 回顾DNN的反向传播算法 我们首先回顾DNN的反向传播算法.在DNN中,我们是首先计算出输出层的$\delta^L$:$$\delta^L = \frac{\partial J(W,b)}{\partial z^L} = \frac{\partial J…
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不…