首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
5700刀打造3卡1080Ti深度学习机器【转】
】的更多相关文章
5700刀打造3卡1080Ti深度学习机器【转】
本文转载自:https://www.jianshu.com/p/ca2e003bf77e 5700美刀,打造3x1080Ti实验室GPU深度学习机器 最近为公司搭建了一台实验用的深度学习主机,在网络上参考了大量的资料,给出了目前最好的配置.本文首先会介绍所有硬件的选择分析,然后介绍深度学习环境搭建流程,最后给出一些简单的性能对比测试. 本文方案定位:适用于预算在5万内,用于深度学习模型研究.开发,需要快速建模验证调参的企业或实验室用户. 目录 Chapter 1:配置方案选择 Chapter…
百度DMLC分布式深度机器学习开源项目(简称“深盟”)上线了如xgboost(速度快效果好的Boosting模型)、CXXNET(极致的C++深度学习库)、Minerva(高效灵活的并行深度学习引擎)以及Parameter Server(一小时训练600T数据)等产品,在语音识别、OCR识别、人脸识别以及计算效率提升上发布了多个成熟产品。
百度为何开源深度机器学习平台? 有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举. 5月20日,百度在github上开源了其深度机器学习平台.此番发布的深度机器学习开源平台属于“深盟”的开源组织,其核心开发者来自百度深度学习研究院(IDL),微软亚洲研究院.华盛顿大学.纽约大学.香港科技大学,卡耐基·梅陇大学等知名公司和高校. 通过这一开源平台,世界各地的开发者们可以免费获得更优质和更容易使用的分布式机器学习算法源码,从…
ML平台_微博深度学习平台架构和实践
( 转载至: http://www.36dsj.com/archives/98977) 随着人工神经网络算法的成熟.GPU计算能力的提升,深度学习在众多领域都取得了重大突破.本文介绍了微博引入深度学习和搭建深度学习平台的经验,特别是机器学习工作流.控制中心.深度学习模型训练集群.模型在线预测服务等核心部分的设计.架构经验.微博深度学习平台极大地提升了深度学习开发效率和业务迭代速度,提高了深度学习模型效果和业务效果. 人工智能和深度学习 人工智能为机器赋予人的智能.随着计算机计算能力越来越强,在…
ArXiv最受欢迎开源深度学习框架榜单:TensorFlow第一,PyTorch第四
[导读]Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二.随后是Caffe.PyTorch和Theano,再次是MXNet.Chainer和CNTK. Keras作者François Chollet刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行: TensorFlow排名第一,这个或许并不出意外,Keras排名第二,随后是Caffe.PyT…
ubuntu16.04系统深度学习开发环境、常用软件环境(如vscode、wine QQ、 360wifi驱动(第三代暂无))搭建相关资料
事后补充比较全面的(找对资料真的省一半功夫):https://www.jianshu.com/p/5b708817f5d8?from=groupmessage Ubuntu16.04 + 1080Ti深度学习环境配置教程 ———————————————————————————————————————————— 以下是自己搭建环境时,所参考的有用资料: Anaconda完全入门指南 https://www.jianshu.com/p/eaee1fadc1e9 ubuntu16.04安装Anacon…
教你如何挑选深度学习GPU【转】
本文转载自:https://blog.csdn.net/qq_38906523/article/details/78730158 即将进入 2018 年,随着硬件的更新换代,越来越多的机器学习从业者又开始面临选择 GPU 的难题.正如我们所知,机器学习的成功与否很大程度上取决于硬件的承载能力.在今年 5 月,我在组装自己的深度学习机器时对市面上的所有 GPU 进行了评测.而在本文中,我们将更加深入地探讨: 为什么深度学习需要使用 GPU GPU 的哪种性能指标最为重要 选购 GPU 时有哪些坑需…
没有博士学位,照样玩转TensorFlow深度学习
教程 | 没有博士学位,照样玩转TensorFlow深度学习 机器之心2017-01-24 12:32:22 程序设计 谷歌 操作系统 阅读(362)评论(0) 选自Codelabs 机器之心编译 参与:侯韵楚.王宇欣.赵华龙.邵明.吴攀 本文内容由机器之心编译自谷歌开发者博客的 Codelabs 项目.据介绍,Google Developers Codelabs 提供了有引导的.教程式的和上手式的编程体验.大多数 Codelabs 项目都能帮助你了解开发一个小应用或为一个已有的应用加入新功能的…
使用亚马逊云服务器EC2做深度学习(一)申请竞价实例
这是<使用亚马逊云服务器EC2做深度学习>系列的第一篇文章. (一)申请竞价实例 (二)配置Jupyter Notebook服务器 (三)配置TensorFlow (四)配置好的系统镜像 众所周知深度学习对计算机的要求很高,配置一台数千元的GPU.8GB的内存.HDD的硬盘的深度学习机器价格不菲.然而你并不需要专门配置一台计算机来做深度学习. 亚马逊云服务AWS上被广泛用于部署网站服务,大多数人不知道的是AWS也有带GPU的服务器.低配版的服务器拥(g2.2xlarge)有8核CPU,1…
深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动
前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和1080Ti显卡驱动,在安装Ubuntu的时候,踩过无数个坑,心力憔悴(...(。•ˇ‸ˇ•。)…),因此将踩过的坑以及对于的解决方案汇总出来,让大家少踩那些坑,过程实在是太磨人了. 一.配置 系统:Ubuntu16.04.3 GPU:GTX1080Ti 二.总体流程步骤 安装Ubuntu16.04 安装1080T…
NNVM打造模块化深度学习系统(转)
[摘录理由]: 之所以摘录本文,主要原因是:该文配有开源代码(https://github.com/dmlc/nnvm):读者能够直接体会文中所述的意义,便于立刻展开研究. MXNet专栏 :NNVM打造模块化深度学习系统 2016-10-01 作者:陈天奇 本文是机器之心 MXNet 系列专栏的第一篇,作者是 MXNet 的打造者之一陈天奇.MXNet 专栏是机器之心之后将发表的系列文章,包括 MXNet 打造者的人物专访.技术博客等,敬请期待! 这是一个深度学习的大航海时代,不仅…