#include <iostream> #include <string> #include <regex> using namespace std; //提前声明类 class A; class B; //进行正式类定义 class A{ public: string Name; B* BPtr; }; class B{ public: string Name; A* APtr; }; int main(){ A* a =new A(); B* b =new B();…
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础RNN网络回归问题 『TensotFlow』深层循环神经网络 『TensotFlow』LSTM古诗生成任务总结 对于torch中的RNN相关类,有原始和原始Cell之分,其中RNN和RNNCell层的区别在于前者一次能够处理整个序列,而后者一次只处理序列中一个时间点的数据,前者封装更完备更易于使用,后者更具灵…
一.问题描述 Python中的垃圾回收是以引用计数为主,分代收集为辅,引用计数的缺陷是循环引用的问题.在Python中,如果一个对象的引用数为0,Python虚拟机就会回收这个对象的内存. sys.getrefcount(a)可以查看a对象的引用计数,但是比正常计数大1,因为调用函数的时候传入a,这会让a的引用计数+1 导致引用计数+1的情况: 对象被创建,例如a=23 对象被引用,例如b=a 对象被作为参数,传入到一个函数中,例如func(a) 对象作为一个元素,存储在容器中,例如list1=…
好久没写了,最近没怎么学到新东西,倒是犯了一个很常见的错误,那就是试图在content editor webpart中添加位于_layouts下面的一个txt文件,虽然这个txt中只是几行简单的html代码,并没有后台代码,但还是引起页面报错:不能解析_layouts下面的路径. 其实道理很简单,因为安全原因,SharePoint不知道位于_layouts下面的文件是否会调用一些后台的代码,如果贸然加载的话,势必会影响SharePoint的安全.也许有的人就会问了,那webpart中user c…
在博客园看到一篇不错的AJAX级联下拉列表,觉得不错,特地拿下来 :转载来自:『大雪无痕』 ,原文地址 //当一个 下拉列表 改变时,触发所有联动:(警告:各下拉列表之间 请不要出现 循环依赖) //本函数,遵守如下规范:不使用任何内存数据(所有数据都是 即时使用,即时获取,数据实时),不初始化注册, //该规范可以在 HTML 出现任何意外时,保持最好的稳定 function RefreshLinkage(ddlCtrl) { var curId = !ddlCtrl ? "" :…
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训练方法教程 一.API介绍 基础操作列表 『TensorFlow』0.x_&_1.x版本框架改动汇总 『TensorFlow』函数查询列表_数值计算 『TensorFlow』函数查询列表_张量属性调整 『TensorFlow』简单的数学计算 『TensorFlow』变量初始化 常用基础操作 『Ten…
线程控制器类 线程控制器原理: 监视tensorflow所有后台线程,有异常出现(主要是越界,资源循环完了)时,其should_stop方法就会返回True,而它的request_stop方法则用于要求各个线程安全退出.需要使用local变量,初始化时注意. coord = tf.train.Coordinator() # 线程控制器 threads = tf.train.start_queue_runners(coord=coord) # 启动队列 try: while not coord.s…
一.项目简介 手动实现mini深度学习框架,主要精力不放在运算优化上,仅体会原理. 地址见:miniDeepFrame 相关博客 『TensorFlow』卷积层.池化层详解 『科学计算』全连接层.均方误差.激活函数实现 文件介绍 Layer.py 层 class,已实现:全连接层,卷积层,平均池化层 Loss.py 损失函数 class,已实现:均方误差损失函数 Activate.py 激活函数 class,已实现:sigmoid.tanh.relu test.py 训练测试代码 主流框架对于卷…
一.模块概述 上节的最后,我们进行了如下操作获取了有限的proposal, # [IMAGES_PER_GPU, num_rois, (y1, x1, y2, x2)] # IMAGES_PER_GPU取代了batch,之后说的batch都是IMAGES_PER_GPU rpn_rois = ProposalLayer( proposal_count=proposal_count, nms_threshold=config.RPN_NMS_THRESHOLD, # 0.7 name="ROI&q…
一.RPN锚框信息生成 上文的最后,我们生成了用于计算锚框信息的特征(源代码在inference模式中不进行锚框生成,而是外部生成好feed进网络,training模式下在向前传播时直接生成锚框,不过实际上没什么区别,锚框生成的讲解见『计算机视觉』Mask-RCNN_锚框生成): rpn_feature_maps = [P2, P3, P4, P5, P6] 接下来,我们基于上述特征首先生成锚框的信息,包含每个锚框的前景/背景得分信息及每个锚框的坐标修正信息. 接前文主函数,我们初始化rpn m…