spark中资源调度任务调度】的更多相关文章

在spark的资源调度中 1.集群启动worker向master汇报资源情况 2.Client向集群提交app,向master注册一个driver(需要多少core.memery),启动一个driver 3.Driver将当前app注册给master,(当前app需要多少资源),并请求启动对应的Executor 4.driver分发任务给Executor的Thread Pool. 根据Spark源码可以知道: 1.一个worker默认为一个Application启动一个Executor 2.启动…
Spark比MR快的原因 1.Spark基于内存的计算 2.粗粒度资源调度 3.DAG有向无环图:可以根据宽窄依赖划分出可以并行计算的task 细粒度资源调度 MR是属于细粒度资源调度 优点:每个task运行的时候单独申请资源,资源被充分利用 缺点:task启动速度慢 粗粒度资源调度 Spark是属于粗粒度资源调度 优点:一次性将所有需要的资源都申请下来,task后续启动就不需要额外申请资源,启动速度非常快 缺点:会造成资源的浪费,因为只有当最后一个task运行完以后资源才会被释放 资源申请 1…
一.前述 Spark中资源调度是一个非常核心的模块,尤其对于我们提交参数来说,需要具体到某些配置,所以提交配置的参数于源码一一对应,掌握此节对于Spark在任务执行过程中的资源分配会更上一层楼.由于源码部分太多本节只抽取关键部分和结论阐述,更多的偏于应用. 二.具体细节 1.Spark-Submit提交参数 Options: --master MASTER_URL, 可以是spark://host:port, mesos://host:port, yarn,  yarn-cluster,yarn…
转载请标明出处http://www.cnblogs.com/haozhengfei/p/0593214ae0a5395d1411395169eaabfa.html Spark Core_资源调度与任务调度详述 资源调度与任务调度(standalone client 流程描述)     集群启动后,Worker会向Master汇报资源情况(实际上将Worker的资源写入到Master的HashSet数据机构中)     一个 Worker 默认给一个 Application 启动 1 个 Exec…
Spark Core 资源调度与任务调度(standalone client 流程描述) Spark集群启动:      集群启动后,Worker会向Master汇报资源情况(实际上将Worker的资源写入到Master的HashSet数据机构中)     一个 Worker 默认给一个 Application 启动 1 个 Executor,可以设置 --executor-cores num 来启动多个.开机启动时最好设置 spreadOut, 可以在集群中分散启动 executor.   …
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver program. Executor:为某Application运行在worker node上的一个进程.该进程负责运行Task,并负责将数据存在内存或者磁盘 上.每个Application都有自己独…
摘要:         Tachyon是一种分布式文件系统,能够借助集群计算框架使得数据以内存的速度进行共享.当今的缓存技术优化了read过程,可是,write过程由于须要容错机制,就须要通过网络或者是磁盘进行复制操作.Tachyon通过将"血统"技术引入到存储层进而消除了这个瓶颈.创建一个长期的以"血统机制"为基础的存储系统的关键挑战是失败情况发生的时候及时地进行数据恢复.Tachyon通过引入一种检查点的算法来解决问题,这样的方法保证了恢复过程的有限开销以及通过…
在介绍Spark中的任务和资源之前先解释几个名词: Dirver Program:运行Application的main函数(用户提交的jar包中的main函数)并新建SparkContext实例的程序,称为驱动程序,通常用SparkContext代表驱动程序(任务的驱动程序). Cluster Manager:集群管理器是集群资源管理的外部服务.Spark上现在主要有Standalone.YARN.Mesos3种集群资源管理器.Spark自带的Standalone模式能满足绝大部分 Spark计…
参考:http://www.raincent.com/content-85-11052-1.html 1.Application:Spark应用程序 指的是用户编写的Spark应用程序,包含了Driver功能代码和分布在集群中多个节点上运行的Executor代码. Spark应用程序,由一个或多个作业JOB组成,如下图所示: 2.Driver:驱动程序 Driver负责运行Application的Main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备S…
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> <深入理解Spark:核心思想与源码分析>一书第二章的内容请看链接<第2章 SPARK设计理念与基本架构> <深入理解Spark:核心思想与源码分析>一书第三章第一部分的内容请看链接<深入理解Spark:核心…