【tf.keras】tf.keras模型复现】的更多相关文章

keras 构建模型很简单,上手很方便,同时又是 tensorflow 的高级 API,所以学学也挺好. 模型复现在我们的实验中也挺重要的,跑出了一个模型,虽然我们可以将模型的 checkpoint 保存,但再跑一遍,怎么都得不到相同的结果. 用 keras 实现模型,想要能够复现,首先需要设置各个可能的随机过程的 seed,如 np.random.seed(1).然后分为两种情况: 代码不要在 GPU 上跑,而是限制在 CPU 上跑,此时可以自行设置 fit 函数的 batch_size 参数…
# 1   sklearn  一般方法 网上有很多教程,不再赘述. 注意顺序是 numpy+mkl     ,然后 scipy的环境,scipy,然后 sklearn # 2 anoconda anaconda 原始的环境已经自带了sklearn,这里说一下新建环境(比如  创建了一个tensorflow的环境),activate tensorflow2.0,然后conda install sklearn 即可,会帮你把各种需要的库都安装. # keras keras 前置需要Theano  或…
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷积层.Pooling池化层等非常丰富有趣的网络结构. 我们可以通过将层的列表传递给Sequential的构造函数,来创建一个Sequential模型. from keras.models import Sequential from keras.layers import Dense, Activa…
keras是基于tensorflow封装的的高级API,Keras的优点是可以快速的开发实验,它能够以TensorFlow, CNTK, 或者 Theano 作为后端运行. 模型构建 最简单的模型是 Sequential 顺序模型,它由多个网络层线性堆叠.对于更复杂的结构,你应该使用 Keras 函数式 API,它允许构建任意的神经网络图. 用Keras定义网络模型有两种方式, Sequential 顺序模型 Keras 函数式 API模型 1.Sequential 顺序模型 from kera…
本文介绍如何在C++环境中部署Keras或TensorFlow模型. 一.对于Keras, 第一步,使用Keras搭建.训练.保存模型. model.save('./your_keras_model.h5') 第二步,冻结Keras模型. from keras.models import load_modelimport tensorflow as tffrom tensorflow.python.framework import graph_iofrom keras import backen…
keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) 即损失函数用的是categorical_crossentropy所以,在pycharm中双击shift键,寻找该函数,会出现keras.loss模块中有该函数,进入该函数后, 原函数为: def categorical_crossent…
tensorflow中的模型常常是protobuf格式,这种格式既可以是二进制也可以是文本.keras模型保存和加载与tensorflow不同,keras中的模型保存和加载往往是保存成hdf5格式. keras的模型保存分为多种情况. 一.不保存模型只显示大概结构 model.summary() 这个函数会打印模型结构,但是仅仅是打印到控制台. keras.utils.plot_model() 使用graphviz中的dot.exe生成网络结构拓扑图 二.保存模型结构 keras.models.…
从keras的keras_applications的文件夹内可以找到内置模型的源代码 Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测.特征提取和finetune 应用于图像分类的模型,权重训练自ImageNet: Xception VGG16 VGG19 ResNet50 InceptionV3InceptionResNetV2 * MobileNet densenet densenet的keras源代码如下: """D…
Keras实践:模型可视化 安装Graphviz 官方网址为:http://www.graphviz.org/.我使用的是mac系统,所以我分享一下我使用时遇到的坑. Mac安装时在终端中执行: brew install graphviz 若卡在Updating Homebrew....,需要取消brew的自动更新: 安装PyDot 加载模型并生成结构图 from keras.models import load_model from keras.utils.vis_utils import p…
matlab没有直接调用tensorflow模型的接口,但是有调用keras模型的接口,而keras又是tensorflow的高级封装版本,所以就研究一下这个……可以将model-based方法和learning-based方法结合,产生很多更有趣的应用. 我的电脑配置参考前一篇博客,总之就是window下,tensorflow-GPU,有显卡,python 3.5. (配置:https://blog.csdn.net/vera__zhang/article/details/78531550)…