cs231n官方note笔记】的更多相关文章

本文记录官方note中比较新颖和有价值的观点(从反向传播开始) 一 反向传播 1 “反向传播是一个优美的局部过程.在整个计算线路图中,每个门单元都会得到一些输入并立即计算两个东西:1. 这个门的输出值,和2.其输出值关于输入值的局部梯度.门单元完成这两件事是完全独立的,它不需要知道计算线路中的其他细节.” 2 反向传播的编程中要学会分段计算,即在前向传播过程中把有用的中间变量缓存下来. 3 输入的大小对梯度有巨大影响,因此数据预处理很重要.例如乘法门会将大梯度分给小输入,小梯度分给大输入,因此当…
): W = np.random.randn(10, 3073) * 0.0001 # generate random parameters loss = L(X_train, Y_train, W) # get the loss over the entire training set if loss < bestloss: # keep track of the best solution bestloss = loss bestW = W print 'in attempt %d the…
gtest 提供了类型参数化测试方案,可以测试不同类型的数据接口,比如模板测试.可以定义参数类型列表,按照列表定义的类型,每个测试case都执行一遍. 本例中,定义了2种计算素数的类,一个是实时计算,一个是提前计算好存放到一个大数组了.既空间和时间实现方式的对比.两种实现类都继承于抽象类PrimeTable. // The prime table interface. class PrimeTable { public: virtual ~PrimeTable() {} ​ // Returns…
前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接:image classification notes 这是一篇介绍性教程,面向非计算机视觉领域的同学.教程将向同学们介绍图像分类问题和数据驱动方法. 内容列表: 图像分类.数据驱动方法和流程 Nearest Neighbor分类器 k-Nearest Neighbor 验证集.交叉验证集和超参数调参…
1.7 sample7--接口测试 值参数不限定类型,也可以是类的引用,这就可以实现对类接口的测试,一个基类可以有多个继承类,那么可以测试不同的子类功能,但是只需要写一个测试用例,然后使用参数列表实现对每个子类的测试. 使用值参数测试法去测试多个实现了相同接口(类)的共同属性(又叫做接口测试) using ::testing::TestWithParam; using ::testing::Values; ​ typedef PrimeTable* CreatePrimeTableFunc();…
sample 10 使用event listener监控Water类的创建和销毁.在Water类中,有一个静态变量allocated,创建一次值加一,销毁一次值减一.为了实现这个功能,重载了new和delete关键字,然后在new和delete函数中,做allocated的增减和记录allocated变量的值. class Water { public: // Normal Water declarations go here. ​ // operator new and operator de…
CS231n简介 CS231n的全称是CS231n: Convolutional Neural Networks for Visual Recognition,即面向视觉识别的卷积神经网络.该课程是斯坦福大学计算机视觉实验室推出的课程.需要注意的是,目前大家说CS231n,大都指的是2016年冬季学期(一月到三月)的最新版本. 课程描述:请允许我们引用课程主页上的官方描述如下. 计算机视觉在社会中已经逐渐普及,并广泛运用于搜索检索.图像理解.手机应用.地图导航.医疗制药.无人机和无人驾驶汽车等领…
http://ironpython.net/documentation/dotnet/这是原文地址 以下笔记仅记录阅读过程中我认为有必要记录的内容,大多数都是依赖翻译软件的机翻,配合个人对代码的理解写出的笔记,个别不是很确定的,会在句首标注   猜测: 另外,这篇文档,也就是官方文档中其实只讲了怎么在Python里用.Net,感觉这篇文档是写给Python开发者看的,但是很奇怪,在百度上也能搜到在.Net中使用Python的例子,不知道那些人的资料是从哪里得来的,我搜遍了官网提供的所有文档和wi…
) # 对数据进行零中心化(重要) cov = np.dot(X.T, X) / X.shape[0] # 得到数据的协方差矩阵 数据协方差矩阵的第(i, j)个元素是数据第i个和第j个维度的协方差.具体来说,该矩阵的对角线上的元素是方差.还有,协方差矩阵是对称和半正定的.我们可以对数据协方差矩阵进行SVD(奇异值分解)运算. U,S,V = np.linalg.svd(cov) U的列是特征向量,S是装有奇异值的1维数组(因为cov是对称且半正定的,所以S中元素是特征值的平方).为了去除数据相…
目录 training Neural Network Activation function sigmoid ReLU Preprocessing Batch Normalization 权重初始化 Weight Initialization 交叉验证 Cross Validation 参数更新方法 Parameter Update SGD SGD+momentum Adagrad RMSprop Adam 改善过拟合 Overfiting 模型集成 Model ensemble 正则化 Reg…