BZOJ2655 Calc - dp 拉格朗日插值法】的更多相关文章

BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[1 ~ m]中选出n个数乘积的和, 那么dp[m][n] = dp[m-1][n] + dp[m-1][n-1]*m*n. 但是这道题的m有1e9那么大,不能dp完,不过我们可以发现,dp[x][n] 是关于x的2*n多项式, 所以,我们只要先求出0~2*n的dp值,再用拉格朗日插值法算出dp[m]…
题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] = f[i][j - 1] + f[i - 1][j - 1] * j\] for(int i = 0; i <= A; i++) f[0][i] = 1; for(int i = 1; i <= N; i++) for(int j = 1; j <= A; j++) f[i][j] = a…
2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] Description 一个序列a1,...,an是合法的,当且仅当: 长度为给定的n. a1,...,an都是[1,A]中的整数. a1,...,an互不相等. 一个序列的值定义为它里面所有数的乘积,即a1a2...an. 求所有不同合法序列的值的和. 两个序列不同当且仅当他们任意一位不一样.…
题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献,则有: \[f_{i,j}=f_{i-1,j-1}*j+f{i,j-1}\] 由于递增序列可以全排列的:\(ans=f_{n,A}×n!\) 时间复杂度\(O(nA)\) 证明一 设\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式,则\(f_{i-1,j-1}*j\)为关于\(j\)的2i-1次…
http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] *  n! A太大,那么用拉格朗日插值法 f[i][j] 是关于i的2j次多项式,证明如下: %%%rqy #include<cstdio> using namespace std; int mod; ][]; ],y[],tot; int Pow(int a,int b) { ; ) ) res=…
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1<A<mod<=10^9,mod是素数. [算法]动态规划+拉格朗日插值 [题解]这道题每个数字的贡献和序列选了的数字积关系密切,所以不能从序列角度考虑(和具体数字关系不大). 设$f_{n,m}$表示前n个数字(值域)中取m个数字的答案,那么枚举取或不取数字n,取n时乘n且有j个位置可以插入,即:…
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status][Discuss] Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M- 1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门课上A获得的成绩均小于等于B获 得的成绩,则称A被B碾压.在B…
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);grid on;%由图像可知 根在1.05到1.15之间 syms x s0=diff(x^3-x^2+sin(x)-1,x,1); % 得到s0= cos(x) - 2*x + 3*x^2 % 迭代方程为 y=x-(x.^3-x.^2+sin(x)-1)/(cos(x) - 2.*x + 3*x.^2…
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关于这个的证明我暂时不说了,如果哪天我回头看看我的blog有点寒碜,我再再补上) 也就是说对于同样的插值样本来说,用不同方法求得的插值函数本质上其实是一样的. 3. 拉格朗日插值法依赖于每个插值节点对应的插值基函数,也就是说每个插值节点都有对应的插值基函数. 4. 拉格朗日插值函数最终由所有插值节点中每个插值节…
开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这里就不在赘述了.一般看这个范例,在回头看公式就比较容易理解. 关于MATLAB的实现,查了很多资料,下面的版本最好理解. %lagran1.m %求拉格朗日插值多项式和基函数 %输入的量:n+1个节点(x_i,y_i)(i = 1,2, ... , n+1)横坐标向量X,纵坐标向量Y %输出的量:n…
题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/post/456777/, 还挺有趣... 根据题目给出的例子我们可以发现, k次方的通项公式的最高次是k+1次, 根据拉格朗日插值法, 构建一个k+1次的方程需要k+2项. 然后公式是  , 对于这个题, p[i]就是i^k+(i-1)^k+(i-2)^k+.....+1^k, 这部分可以预处理出…
看zzq大佬的博客,看到了这个看似很深奥的东西,实际很简单(反正比FFT简单,我是一个要被FFT整疯了的孩子) 拉格朗日插值法 是什么 可以找到一个多项式,其恰好在各个观测点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个点的多项式函数. 定义 概念 一般地,若已知y=f(x)在互不相同n+1个点x0,x1,...xn处的函数值y0,y1,...yn(即该函数(x0,y0),(x1,y1),...(xn,yn)这n+1个点)则可…
链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018niuke1.F/ 代码: #include <cstdio> #include <cassert> #include <algorithm> using namespace std; /// 注意mod,使用前须调用一次 polysum::init(int M); names…
XLkxc Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定 k,a,n,d,p f(i)=1^k+2^k+3^k+......+i^k g(x)=f(1)+f(2)+f(3)+....+f(x) 求(g(a)+g(a+d)+g(a+2d)+......+g(a+nd))mod p Input 第一行数据组数,(保证小于6) 以下每行四个整数 k,a,n,d Output 每行一个结果…
F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description There are well-known formulas: , , . Also mathematicians found similar formulas for higher degrees. Find the value of the sum modulo 109 + 7 (so you shoul…
1.快速排序  参考自: https://www.cnblogs.com/yundan/p/4022056.html namespace 快速排序算法 { class Program { static void Main(string[] args) { Console.WriteLine("请输入待排序数列以 , 分割"); string _s = Console.ReadLine(); string[] _sArray = _s.Split(",".ToChar…
题目链接 传送门 题面 题意 给你\(n,k\),要你求\(\sum\limits_{i=1}^{n}i^k\)的值. 思路 根据数学知识或者说题目提示可知\(\sum\limits_{i=1}^{n}i^k\)可以被一个\(k+1\)次多项式表示. 由拉格朗日插值法(推荐学习博客)的公式:\(L(x)=l(x)\sum\limits_{i=1}^{k+2}y_i\frac{w_i}{x-x_i},\text{其中}l(x)=\prod\limits_{i=1}^{k+2}(x-i),y_i=\…
题目链接:https://nanti.jisuanke.com/t/40254 题意: 思路: 这题要用到拉格朗日插值法,网上查了一下,找到一份讲得特别好的: -------------------------------------------------------- 以上关于拉格朗日插值法的理论转载自:https://blog.csdn.net/ftx456789/article/details/90750508 关于这道题的做法:这题给了x从0~n的n+1种取值,那么可以用O(n)来插值…
数据插补 常见插补方法 插值法--拉格朗日插值法 根据数学知识可知,对于平面上已知的n个点(无两点在一条直线上可以找到n-1次多项式 ,使次多项式曲线过这n个点. 1)求已知过n个点的n-1次多项式: 将n个点的坐标带入多项式:得到 解出拉格朗日插值多项式: 将缺失的函数值对应的点x带入多项式得到趋势值得近似值L(x) 实验数据来源 链接:https://pan.baidu.com/s/1jiIOoselsqVQR4P_EaS3pA 提取码:t970 代码 #拉格朗日插值代码 import pa…
考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考虑能不能在这一维上优化.完全不会证地有f[i][j]是一个关于j的2i次多项式.那么dp出一部分后就可以直接拉格朗日插值求出多项式,代入即可. #include<iostream> #include<cstdio> #include<cmath> #include<c…
题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1,\ldots,a_n\)互不相等. ​ 一个序列的值定义为它里面所有数的乘积,即\(a_1\times a_2\times\cdots\times a_n\). 求所有不同合法序列的值的和. ​ 两个序列不同当且仅当他们任意一位不一样. ​ 输出答案对一个数\(p\)取余的结果. \(n\leq50…
[BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j]=f[i-1][j-1]*i*j+f[i][j-1]\) 即不考虑选择\(j\),以及当前选择\(j\),那么枚举是哪个数,转移即可. 时间复杂度\(O(An)\). 碰到这种东西我们直接假装它是一个若干次的多项式. 先假设是个\(n\)次多项式,发现不对, 再试试\(2n\)次多项式,恩,很对,…
bzoj 题意: 给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\).同时要求这\(n\)个数两两不相同. 问一共有多少种方案. 思路: 因为\(A\)很大,同时随着值域的不断增加,感觉最终的答案像个多项式,又因为\(0\leq A\leq n\)时的答案很显然..所以猜一发这是一个最高项次数为\(2n\)的多项式,然后拉格朗日插值搞就行了(滑稽). 求方案数的时候\(dp\)来求(我好像是乱搞搞出来的). /* * Author: heyuhhh * Created…
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数,当前选的是\(j\)的价值和.复杂度是\(O(nA)\)的.然后忘掉这个做法吧这个做法没前途. 上面这个做法最后还要\(O(A)\)求一遍和,感觉不够优美. 直接令\(f_{i,j}\)表示选了\(i\)个数,选的最大的数\(\leq j\)的价值和.转移为:\(f_{i,j}=f_{i,j-1}+…
传送门 题意简述:问有多少数列满足如下条件: 所有数在[1,A][1,A][1,A]之间. 没有相同的数 数列长度为nnn 一个数列的贡献是所有数之积,问所有满足条件的数列的贡献之和. A≤1e9,n≤500A\le1e9,n\le500A≤1e9,n≤500 思路: 肯定不能枚举所有情况. 我们先规定这个数列满足a1<a2<⋅˙⋅⋅<ana_1<a_2<\dot\cdot\cdot\cdot<a_na1​<a2​<⋅˙⋅⋅<an​,最后答案乘上n!n…
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][j]=sum f[i-1][k]*C(k,j)*C(n-1-k,R[i]-j)  (k>=j) 怎么解释呢,首先前i-1科有k个人已经被碾压,k肯定大于等于j,然后考虑当前这一科有j个人被碾压,那么就需要从k个人中选出j个来即C(k,j),然后从剩下的有R[i]-j个人比B考的少,这些人必须是之前i…
题目大意 zjt 是个神仙. 一天,zjt 正在和 yww 玩猜数游戏. zjt 先想一个 \([1,n]\) 之间的整数 \(x\),然后 yww 开始向他问问题. yww 每次给 zjt 一个区间 \([l,r](1\leq l\leq r\leq n)\),并询问:\(x\) 是否在区间 \([l,r]\) 内? 对于 NOIP 爆零的 yww 来说,他只会用二分法去猜出这个数. 但是 zjt 决定加大难度.他只会在 yww 给出所有想问的问题之后一次性给出答案. 请你帮助 yww 算出,…
拉格朗日插值+dp 直接dp是n立方的,我们考虑优化. dp式子为f[i][j]=f[i-1][j-1]*j*i+f[i-1][j]表示i个元素选j个的答案 然后发现最高次就是2j次,所以我们预处理出2n个点的值再用拉格朗日一插就好. #include<bits/stdc++.h> using namespace std; typedef long long ll; int A,n,mod; int qmod(int a,int b) { ; while(b) { )ans=1ll*ans*a…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html https://blog.csdn.net/lvzelong2014/article/details/79159346 https://blog.csdn.net/qq_35649707/article/details/78018944 还只会最简单的…
传送门 设\(dp[i][j]\)为考虑\(i\)个数,其中最大值不超过\(j\)的答案,那么转移为\[dp[i][j]=dp[i-1][j-1]\times i\times j+dp[i][j-1]\] 即最大值不超过\(j-1\)的答案加上最大值刚好为\(j\)的答案,乘上\(i\)是因为\(j\)可以放在\(i\)个数里随便哪个位置 考虑把转移拆开\[dp[i][j]=\sum_{k=0}^{j-1}dp[i-1][k]\times i\times (k+1)\] 如果把\(i\)看成列,…