【CTS2019】随机立方体(容斥)】的更多相关文章

https://www.cnblogs.com/cjyyb/p/10900993.html #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=(l); i<=(r); i++) using namespace std; ,mod=; int n,m,l,d,V,M,k,T,ans,v[N],w[N],s[N],is[N],fac[N],inv[N]; : 1ll*fac[n]*inv[m]%m…
传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text{或} c = z\}\) 发现恰好\(k\)个位置不大好算,考虑容斥计算强制\(k\)个位置是极大值的概率 对于极大值所在位置的数\(a_1,a_2,...,a_k\),假设\(a_1 > a_2 > ... > a_k\),那么我们还需要满足\(a_1 \geq a_1\)所在位置控制的…
这题七次方做法显然,但由于我太菜了,想了一会发现也就只会这么多,而且别的毫无头绪.发现直接做不行,那么,容斥! f[i]为至少i个极值的方案,然后这里需要一些辅助变量,a[i]表示选出i个三维坐标均不相同的i个极大值的方案数,g[i]表示i个极大的数任意一个至少有一维坐标相同的点的个数,h[i]表示g[i]的极值可以同时存在的方案数,那么有f[i]=C(nml,g[i])a[i]h[i](nml-g[i])!. a[i]很容易求得,就是(∏(n-j)(m-j)(l-j))/i!,其中j∈[0,i…
problem \(\mathtt {loj-3119}\) 题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一维相同的其他格子上的数都要大的话,我们就称它是极大的.将 \(n\times m\times l\) 的排列随机填入这些格子,求恰有 \(k\) 个极大的数的概率.\(T\) 组数据. \(T\le 10,\ 1\le n,m,l\le 5\times 10^6,\ 1\le k \le 100\)…
考虑容斥,计算至少有k个极大数的概率.不妨设这k个数对应的格子依次为(k,k,k)……(1,1,1).那么某一维坐标<=k的格子会对这些格子是否会成为极大数产生影响.先将这样的所有格子和一个数集对应起来,即将答案乘上一个组合数.然后需要考虑的就是这些格子有多少种合法排列顺序. 这个排列需要满足的是(i,i,i)之前不能出现某一维坐标为i的格子.可以看做是填完(i,i,i)后,所有三维坐标中最小值为i的格子就可以填了.这样的格子数量容易计算.于是考虑将格子依次塞进排列,显然第一位只能放(k,k,k…
传送门 思路 非常显然,就是要统计有多少种方式使得奇数的个数不超过\(n-2m\).(考场上这个都没想到真是身败名裂了--) 考虑直接减去钦点\(n-2m+1\)个奇数之后的方案数,但显然这样会算重,所以考虑容斥. 设\(f_k\)表示至少有\(k\)个为奇数的方案数. 那么有 \[ \begin{align*} f_k&={D\choose k}{n!}[x^n](\frac{e^x-e^{-x}}{2})^k e^{(D-k)x}\\ &={D\choose k}\frac{1}{2^…
原题传送门 毒瘤计数题 我们设\(dp_i\)表示至少有\(i\)个极大数字的概率,\(ans_i\)表示恰好有\(i\)个极大数的概率,\(mi=Min(n,m,l)\) 易知: \[dp_i=\sum_{j=i}^{mi} ans_j \tbinom{j}{i}\] 由二项式反演得: \[ans_i=\sum_{j=i}^{mi} dp_j \tbinom{j}{i} (-1)^{j-i}\] 我就不在此证明(实际是我不会证明) 所以我们只需要快速求出dp数组,就珂以快速得到答案 我们需要利…
洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数,那么 \[ans=\dfrac{1}{(nml)!}\sum\limits_{i=k}^{\min(n,m,l)}f_i(-1)^{i-k}\dbinom{i}{k} \] 考虑怎么求 \(f_i\),首先我们肯定要选出 \(i\) 个极大的位置.我们假设 \(g_i\) 为选出 \(i\) 个极大的位置的…
[CTS2019]随机立方体(容斥) 题面 LOJ 洛谷 题解 做这道题目的时候不难想到容斥的方面. 那么我们考虑怎么计算至少有\(k\)个极大值的方案数. 我们首先可以把\(k\)个极大值的位置给确定出来,方案数是\(\displaystyle {n\choose k}{m\choose k}{l\choose k}(k!)^3\),乘上\(k!\)是为了确定之间的顺序关系,即我们先确定\(xyz\)三维,然后把这三维要一一对应到点才行.假设这个值是\(w[k]\). 剩下要填的是两个部分,一…
Description Solution 记\(N=min(n,m,l)\) 首先考虑容斥,记\(f(i)\)为至少有i个位置是极大的,显然极大的位置数上界是N. 那么显然\(Ans=\sum\limits_{i=k}^{N}(-1)^{i-k}f(i){i \choose k}\) 现在来计算\(f\) 我们考虑立方体中哪些位置是极大的,显然这些极大的位置三维坐标都互不相同,然后剩下的怎么选概率都是一样的. 将这i个位置按值从小到大排起来,那么有序的选出\(i\)个位置的方案数就是\(n^{i…