GCN: Graph Convolutional Network】的更多相关文章

从CNN到GCN的联系与区别: https://www.zhihu.com/question/54504471/answer/332657604 更加详解Laplacian矩阵: https://www.zhihu.com/question/54504471/answer/630639025 GCN 实践: https://mp.weixin.qq.com/s/sg9O761F0KHAmCPOfMW_kQ 深度学习时代的图模型,图网络综述: https://mp.weixin.qq.com/s/…
作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体结构,交通路网数据,以及很火的知识图谱等,甚至规则网格结构数据(如图像,视频等)也是图数据的一种特殊形式,因此图是一个很值得研究的领域. 针对graph的研究可以分为三类: 1.经典的graph算法,如生成树算法,最短路径算法,复杂一点的二分图匹配,费用流问题等等: 2.概率图模型,将条件概率表达为…
Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition 摘要 基于骨架的动作识别因为其以时空结合图(spatiotemporal graph)的形式模拟了人体骨骼而取得了显著的效果. 在现有的基于图的方法中,图的拓扑结构是手动设置的,而且在所有层以及输入样本中是固定不变的.这样的方法在用在有层级CNN和不同输入样本的动作识别中不是最佳的. 而且骨架中的具有更多细节和判别式信息二级结…
论文链接:https://arxiv.org/abs/1811.05320 博客原作者Missouter,博客链接https://www.cnblogs.com/missouter/,欢迎交流. 解读了一下这篇论文github上关于T-GCN的代码,主要分为main文件与TGCN文件两部分,后续有空将会更新其他部分作为baseline代码的解读(鸽). 1.main.py # -*- coding: utf-8 -*- import pickle as pkl import tensorflow…
How to do Deep Learning on Graphs with Graph Convolutional Networks https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-7d2250723780 scientific internet may need.…
第一步:从前一个隐藏层到后一个隐藏层,对结点进行特征变换 第二步:对第一步进行具体实现 第三步:对邻接矩阵进行归一化(行之和为1) 邻接矩阵A的归一化,可以通过度矩阵D来实现(即通过D^-1*A来实现对A的归一化). 在实践中,使用对称归一化更加有效和有趣.变成下式: 第四步:加入自循环(每个结点从自身出发,又指向自己) 实际上,就是把邻接矩阵对角线上的数,全部由0变为1. 第五步:考虑每个结点与邻结点的关系(一般进行求和运算)  第六步:公式简化 将归一化运算简化一下: 则原式可以变为:  即…
为给之后关于图卷积网络的科研做知识积累,这里写一篇关于GCN基本理解的博客.GCN的本质是一个图网络中,特征信息的交互+与传播.这里的图指的不是图片,而是数据结构中的图,图卷积网络的应用非常广泛 ,经常被举到的典型例子就是一个空间中热量的传递和交互,这里不多作赘述. 一.图卷积网络与普通卷积网络的应用范围 图卷积网络为什么叫图卷积网络呢?图卷积网络,其实就是就是GCN,但GCN为什么是图神经网络呢?小编也很疑惑. 好了!开玩笑的话先打住,进入正题.首先复习一下卷积神经网络的工作原理,以检测图片的…
论文链接:https://arxiv.org/abs/1811.05320 最近发现博客好像会被CSDN和一些奇怪的野鸡网站爬下来?看见有人跟爬虫机器人单方面讨论问题我也蛮无奈的.总之原作者Missouter,博客链接https://www.cnblogs.com/missouter/,欢迎交流. 整理.精炼了一下这篇论文的思路. Abstract: 交通预测的难点在于交通拓扑网络复杂的结构与随时间动态发生的交通变化:为了提取交通网的空间与时间特征,文章提出了一种时间性的图卷积网络模型,结合了门…
面向领域特定目标的对话系统通常需要建模三种类型的输入,即(i)与领域相关的知识库,(ii)对话的历史(即话语序列)和(iii)需要生成响应的当前话语. 在对这些输入进行建模时,当前最先进的模型(如Mem2Seq)通常会忽略知识图和对话上下文中的句子中固有的丰富结构. 受最近结构感知图卷积成功的启发针对各种NLP任务,如机器翻译.语义角色标记和文档日期,我们提出了一种增强记忆的GCN用于面向目标的对话. 我们的模型利用(i)知识库中的实体关系图和(ii)与话语相关联的依赖图来计算词汇和实体的更丰富…
Introduction 该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构(recurrent DNN architecture),通过使用Siamese网络(孪生神经网络),并结合了递归与外貌数据的时间池,来学习每个行人视频序列的特征表示. Method (1)特征提取架构: 第一层:卷积神经网络,提取每个行人的外貌特征向量: 第二层:循环神经网络,让网络更好的提取时空信息: 第三层:时间池,让网络将不同长度的视频序列总结为一个特征向量. Siame…
Semi-supervised Classification with Graph Convolutional Networks 2018-01-16  22:33:36 1. 文章主要思想: 2. 代码实现(Pytorch):https://github.com/tkipf/pygcn  [Introduction]: 本文尝试用 GCN 进行半监督的分类,通过引入一个 graph Laplacian regularization term 到损失函数中: 其中,L0 代表损失函数,即:gra…
最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/a6690680620642730510/ graph embedding 技术学习 如何理解 Graph Convolutional Network(GCN): https://www.zhihu.com/question/54504471/answer/332657604 卷积神经网络的卷积核:…
最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/a6690680620642730510/ graph embedding 技术学习 如何理解 Graph Convolutional Network(GCN): https://www.zhihu.com/question/54504471/answer/332657604 卷积神经网络的卷积核:…
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning> Authors:Jiwoong Park.Minsik Lee.H. Chang.Kyuewang Lee.J. Choi Sources:2019 IEEE/CVF International Conference on Computer Vision (ICCV) Paper:Downlo…
Paper Information Title:<Attention-driven Graph Clustering Network>Authors:Zhihao Peng, Hui Liu, Yuheng Jia, Junhui HouSource:2021, ACM MultimediaOther:1 Citations, 46 ReferencesPaper:DownloadCode:DownloadTask: Deep Clustering.Graph Clustering.Graph…
Emotion Recognition Using Graph Convolutional Networks 2019-10-22 09:26:56 This blog is from: https://towardsdatascience.com/emotion-recognition-using-graph-convolutional-networks-9f22f04b244e Recently, deep learning has made much progress in natural…
创新点: 1.在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152 2.利用 channel attention 来挑选出最具有识别力的特征 3.迁移学习来解决数据稀缺的问题,用了不同分辨率训练好的数据 目标数据集: landsat-8 和 ISPRS Vaihingen Challenge Dataset 语义分割现代技术: 1.global context(全局上下文信息):如…
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: https://128.84.21.199/pdf/1807.09975.pdf 本文将 Graph Neural Network (GNN) 应用到 person re-ID 的任务中,用于 model 不同 prob-gallery 之间的关系,将该信息也用于 feature learning…
(Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014) 摘要:我们提出了一种单图像超分辨率的深度学习方法(SR).我们的方法直接学习在低/高分辨率图像之间的端到端映射.这个映射表现为通过一个深度的卷积神经网络CNN,把低分辨率的图像作为输入,输出高分辨率图像.我们进一步证明了基于传统的稀疏编码超分辨的方法也可以看作是一个深卷积网络.但不像传统的方法一样分离的处理每一个组成,我们的方法联合优化了所有层…
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:45:13  研究背景和动机: 行人动作识别(Human Action Recognition)主要从多个模态的角度来进行研究,即:appearance,depth,optical-flow,以及 body skeletons.这其中,动态的人类骨骼点 通常是最具有信息量的,且能够和其他模态进行互补.…
Graph Convolutional Networks 2018-01-16  19:35:17 this Tutorial comes from YouTube Video:https://www.youtube.com/watch?v=0_O8PdZBc5s&t=2097s 之所以这个方面的研究会吸引人,是因为这个东西可以将很多知识联系起来.现实生活中,有很多东西都可以应用的到,如: 上图展示了现有的 CNN 模型,在对图像进行处理时,利用局部的卷积核进行卷积操作时,进行的加权过程. 可以…
Skeleton-Based Action Recognition with Directed Graph Neural Network 摘要 因为骨架信息可以鲁棒地适应动态环境和复杂的背景,所以经常被广泛应用在动作识别任务上,现有的方法已经证实骨架中的关键点和骨头信息对动作识别任务非常有用.然而如何将两种类型的数据最大化地利用还没有被很好地解决. 作者将骨架数据表示成一个有向非循环图(Directed acyclic graph),该图基于自然人体的节点和骨骼的动力学依赖. 这个新颖的图结构用…
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 摘要 动态人体骨架模型带有进行动作识别的重要信息,传统的方法通常使用手工特征或者遍历规则对骨架进行建模,从而限制了表达能力并且很难去泛化. 作者提出了一个新颖的动态骨架模型ST-GCN,它可以从数据中自动地学习空间和时间的patterns,这使得模型具有很强的表达能力和泛化能力. 在Kinetics和NTU-RGBD两个数据集上a…
翻译: How to do Deep Learning on Graphs with Graph Convolutional Networks 什么是图卷积网络 图卷积网络是一个在图上进行操作的神经网络.给定一个图\(G=(E,V)\) ,一个GCN的输入包括: 一个输入特征矩阵X,其维度是\(N\times F^0\) ,其中N是节点的数目,\(F^0\)是每个节点输入特征的数目 一个\(N \times N\)的对于图结构的表示的矩阵,例如G的邻接矩阵A GCN的一个隐藏层可以写成\(H^i…
1 简介 随着图卷积神经网络在近年来的不断发展,其对于图结构数据的建模能力愈发强大.然而现阶段的工作大多针对简单无向图或者异质图的表示学习,对图中边存在方向和类型的特殊图----多关系图(Multi-relational Graph)的建模工作较少,且大多存在着两个问题: (1)整体网络模型的过参数化, (2)仅针对于结点的表示学习. 针对这两个问题,本论文提出了一种基于组合的图卷积神经网络来同时建模结点和边的表示,为了降低大量的边类型带来的参数量,作者采用了向量分解的方式,所有的边类型表示通过…
论文链接:https://arxiv.org/abs/1903.09784v1 Abstract 社交关系智能代理在人工智能领域中越来越引人关注.为此,我们需要一个可以在不同社会关系上下文中理解社交关系的系统.在给定的视觉场景中推断社会情境不仅涉及对象的识别,而且还需要更深入地了解所涉人员的关系和属性.因此,一种表示人际关系和属性的计算方法是使用显式的知识图谱来进行更高级别的推理.我们介绍了一种新颖的可训练的端到端的神经网络,其能够生成社交关系图-对给定的输入图像中的社交关系和属性进行结构化.统…
Paper Information Title:Geom-GCN: Geometric Graph Convolutional NetworksAuthors:Hongbin Pei, Bingzhen Wei, K. Chang, Yu Lei, Bo YangSources:2020, ICLRPaper:Download Code:Download Abstract Message-passing neural networks (MPNNs) 存在的问题:MPNNs 的 aggregat…
论文信息 论文标题:LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation论文作者:Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, Meng Wang论文来源:2020, SIGIR论文地址:download 论文代码:download 1 Introduction 舍弃了GCN的特征变换(feature transfor…
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang论文来源:2019, NeurIPS论文地址:download 论文代码:download 1 Introduction GNNs 中的图卷积操作可以认为是对目标节点的邻居特征线性聚合(加权和)…
论文信息 论文标题:DropEdge: Towards Deep Graph Convolutional Networks on Node Classification论文作者:Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huang论文来源:2020, ICLR论文地址:download 论文代码:download 1 Introduction 由于 2022 年的论文看不懂,找了一篇 2020 的论文缓解一下心情,我太难了. 提出一种可以缓解过拟合…