通过对移动互联网数据的分析,了解移动终端在互联网上的行为以及各个应用在互联网上的发展情况等信息. 具体包括对不同的应用使用情况的统计.移动互联网上的日常活跃用户(DAU)和月活跃用户(MAU)的统计,以及不同应用中的上行下行流量统计等分析. 为了简化移动互联网数据的分析,我这里是当个入门. 假设,移动互联网数据如下 NodeID即基站ID信息 CI即小区标识信息 IMEI即国际移动电话设备识别码 APP即应用名称 Time即访问时间 UplinkBytes即上行的字节数 DownlinkByte…
本博文的主要内容是: 1.rdd基本操作实战 2.transformation和action流程图 3.典型的transformation和action RDD有3种操作: 1.  Trandformation      对数据状态的转换,即所谓算子的转换 2.  Action    触发作业,即所谓得结果的 3.  Contoller  对性能.效率和容错方面的支持,如cache.persist.checkpoint Contoller包括cache.persist.checkpoint. /…
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ jps8457 Jpsspark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/loc…
1.以本地模式实战map和filter 2.以集群模式实战textFile和cache 3.对Job输出结果进行升和降序 4.union 5.groupByKey 6.join 7.reduce 8.lookup 1.以本地模式实战map和filter 以local的方式,运行spark-shell. spark@SparkSingleNode:~$ cd /usr/local/spark/spark-1.5.2-bin-hadoop2.6/binspark@SparkSingleNode:/u…
声明: 大数据中,最重要的算子操作是:join  !!! 典型的transformation和action val nums = sc.parallelize(1 to 10) //根据集合创建RDD map适用于 package com.zhouls.spark.cores import org.apache.spark.{SparkConf, SparkContext} /** * Created by Administrator on 2016/9/27. */object Transfo…
这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable…
不多说,直接上代码. 代码 package zhouls.bigdata.myWholeHadoop.HDFS.hdfs4; import java.io.IOException; import java.net.URISyntaxException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.BlockLocation;import org.apache.hadoop.fs.FileStatus…
不多说,直接上干货! 不带Hive支持 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.</artifactId> <version></version> </dependency> 带Hive支持(推荐使用) <dependency> <groupId>org.apache.spark&l…
不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce.ParseTVDataCompressAndCounter; import java.net.URI; import java.util.List;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Co…
大家,若是看过我前期的这篇博客的话,则 HBase编程 API入门系列之put(客户端而言)(1) 就知道,在这篇博文里,我是在HBase Shell里创建HBase表的. 这里,我带领大家,学习更高级的,因为,在开发中,尽量不能去服务器上创建表. 所以,在管理端来创建HBase表.采用线程池的方式(也是生产开发里首推的). package zhouls.bigdata.HbaseProject.Pool; import java.io.IOException; import java.util…