Nk 1214 Relatives(欧拉函数)】的更多相关文章

题意很简单 就是欧拉函数的定义: 欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) .题目求的就是φ(n) 根据 通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数 然后利用以下性质变形: 欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n).                                  若n是质数p的k…
题目链接 题意 : 求小于等于n中与n互质的数的个数. 思路 : 看数学的时候有一部分是将欧拉函数的,虽然我没怎么看懂,但是模板我记得了,所以直接套了一下模板. 这里是欧拉函数的简介. #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> using namespace std; int main() { int x…
题目大意 给定一个正整数n,要求你求出所有小于n的正整数当中与n互质的数的个数 题解 欧拉函数模板题~~~因为n过大~~~所以直接用公式求 代码: #include<iostream> #include<cmath> #include<cstdio> using namespace std; int euler_phi(int n) { int m=(int)sqrt(n+0.5); int ans=n; ; i<=m; i++) ) { ans=ans/i*(i…
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article/details/35774889 最主要的欧拉函数: 欧拉函数:求小于n的与n互质的个数   欧兰函数公式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)-..(1-1/pn),当中p1, p2--pn为x的全部质因数   就是要求这种式子啦,只是求这条式子.相信有非…
Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11372   Accepted: 5544 Description Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if ther…
Relatives Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz. Input There are several t…
Relatives AC代码 Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16186   Accepted: 8208 Description Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relativel…
裸欧拉函数. #include<stdio.h> #include<string.h> ; int p[N],pr[N],cnt; void init(){ ;i<N;i++){ if(!p[i])pr[++cnt]=i; ;j<=cnt&&i*pr[j]<N;j++){ p[i*pr[j]]=; ) break; } } } int er(int n){ int ans=n; ;i<=cnt&&pr[i]*pr[i]<…
题目问有多少个小于n的正整数与n互质. 这个可以用容斥原理来解HDU4135.事实上这道题就是求欧拉函数$φ(n)$. $$φ(n)=n(1-1/p_1)(1-1/p_2)\dots(1-1/p_m)\tag{p为n的质因子}$$ 这个通项公式可以通过容斥原理的解法来验证.那么利用这个通项就能在$O(\sqrt[]n)$下计算出φ(n). #include<cstdio> #include<cstring> using namespace std; int phi(int n){…
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n). 特殊性质:当n为奇数时,φ(2n)=φ(n), φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn), 其中p1,p2,p3,p4,……pn为x的所有质因数, 原因:如果x = p^k,那么p的所有倍数与x都不互质,所以除了p的倍数外的数的个数就是x*(1-1/p)个   比如下面的题目: Description Given n, a positive integer, how ma…
题目链接 Description Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz. Input There are se…
<题目链接> 题目大意: Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz. 解题分析: 其实只要看懂题目就会…
http://poj.org/problem?id=2407 题意: 给出一个n,求小于等于的n的数中与n互质的数有几个. 思路: 欧拉函数的作用就是用来求这个的. #include<iostream> #include<algorithm> #include<string> #include<cstring> #include<cmath> using namespace std; int n; int main() { //freopen(&…
一.题目 Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz. Input There are several test c…
Description Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz. Input There are several…
题意就是求10^9以内的正整数的欧拉函数(Φ(n)表示<=n的与n互质的正整数个数). 解法:用欧拉筛和欧拉函数的一些性质:    1.若p是质数,Φ(p)=p-1:    2.欧拉函数是积性函数,即若a,b互质,则Φ(ab)=Φ(a)*Φ(b):    3.若a,b不互质,则Φ(ab)=Φ(a)*b. 若 n≤10^6,可以通过欧拉筛用数组预处理得出:若不是,再分解质因数,利用Φ(n)=n*(1-1/p1)*(1-1/p2)*...*(1-1/pk) {除去各质因数的 n 以内的倍数}求出.…
题意: 给你一个正整数n,问你在区间[1,n)中有多少数与n互质 题解: 1既不是合数也不是质数(1不是素数) 互质是公约数只有1的两个整数,叫做互质整数.公约数只有1的两个自然数,叫做互质自然数 所以1与任何整数都互质 根据欧拉函数求解 欧拉函数是少于或等于n的数中与n互质的数的数目. 欧拉函数的性质:它在整数n上的值等于对n进行素因子分解后,所有的素数幂上的欧拉函数之积. 欧拉函数的值 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)-..(1-1/pn),…
Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd(n−a,n)×gcd(n−b,n)=nk. Goffi wants to know the number of (a,b) satisfy the equality, if n and k are given and 1≤a,b≤n. Note: gcd(a,b) means greatest co…
Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13598   Accepted: 6771 Description Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if ther…
题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n. 输入 The first line contains T the number of test cases. Each of the next T lines contain an integer n. 输出 Ou…
题意 给一个\(n\),计算 \[\sum_{i=1}^{n}\sum_{j=1}^{i-1}[gcd(i + j, i - j) = 1]\] 题解 令\(a = i - j\) 要求 \[\sum_{i=1}^{n}\sum_{j=1}^{i-1}[gcd(i + j, i - j) = 1]\] 即求 \[\sum_{i=1}^{n}\sum_{a=1}^{i-1}[gcd(2*i - a, a) = 1]\] 根据\(gcd\)的性质,即 \[\sum_{i=1}^{n}\sum_{a=…
 poj                         Relatives                                Time Limit: 1000MS   Memory Limit: 65536K                                                                                                                                          …
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n==1]d∣n∑​μ(d)=[n==1] 移项 μ(d)=[n==1]−∑d∣n,d<nμ(d)∴S(N)=∑i=1Nμ(i)=∑i=1N([i==1]−∑d∣i,d<iμ(d))=1−∑i=1N∑d∣i,d<iμ(d)\mu(d)=[n==1]-\sum_{d|n,d<n}\mu(d)\…
题意: 求出来区间[1,n]内与n互质的数的数量 题解: 典型的欧拉函数应用,具体见这里:Relatives POJ - 2407 欧拉函数 代码: 1 #include<stdio.h> 2 #include<string.h> 3 #include<iostream> 4 #include<algorithm> 5 #include<math.h> 6 using namespace std; 7 typedef long long ll;…
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知识点:   欧拉函数.http://www.cnblogs.com/shentr/p/5317442.html 题解一: 当M==1时,显然答案为N. 当M!=1.  X是N的因子的倍数是 gcd(X,N)>1 && X<=N 的充要条件.so  先把N素因子分解, N=     …
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 uva上做过gcd(x,y)=1的题 gcd(x,y)=p ---> gcd(x/p,y/p)=1 每个质数做一遍行了 答案是欧拉函数的前缀和*2…
题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k)) f(0,k) = balabalabalabala 所以,实际上的f(n,k)是这么个东西 f(0,(0,(0,(0,(0,(0,(0,(0,k)))))))) 直接递归求解并打出表来,我们可以发现这样的事实 f(0,k) = k+1 所以有f(n,k) = n + k + 1; 所以题目就转…
Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler(int n) { int ans=n; for(int i=0;i<cnt&&prime[i]<=n;i++) { if(n%prime[i]==0) { ans=ans-ans/prime[i]; while(n%prime[i]==0) n/=prime[i]; } } if(…
51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质.  …