大意: 构造一个[1,2,...n]的排列, 使得前缀积模n为[0,1,...,n-1]的排列 这种构造都好巧妙啊, 大概翻一下官方题解好了 对于所有>=6的合数$n$, 有$(n-1)! \equiv 0 \space (mod \space n)$, 一定不成立 对于素数可以构造$[1,\frac{2}{1},\frac{3}{2},\frac{4}{3},...,\frac{n-1}{n-2},n]$, 或者构造$[1,g,g^{-2},g^3,g^{-4},...,n]$, $g$为$n…