POJ 1830 【高斯消元第一题】】的更多相关文章

首先...使用abs()等数学函数的时候,浮点数用#include<cmath>,其它用#include<cstdlib>. 概念: [矩阵的秩] 在线性代数中,一个矩阵A的列秩是A的线性无关的纵列的极大数目.类似地,行秩是A的线性无关的横行的极大数目. 此题如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择,既1 << n 对于r以下的行,必定全是0,那么如果a[i][n]!=0 必然出现矛盾,于是判定无解. #include <iostrea…
开关问题   Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作.你的任务是,计算有多少种可以达到指定状态的方法.(不计开关操作的顺序) Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第…
http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http://poj.org/problem?id=1753 http://poj.org/problem?id=3185 这几个题目都类似,都可以使用高斯消元来求解一个模2的01方程组来解决. 有时候需要枚举自由变元,有的是判断存不存在解 POJ 1222 EXTENDED LIGHTS OUT 普通的问题.…
http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我自己想了想,就用了高斯消元 + 费马小定理.因为%p是质数,所以很容易就用上了费马小定理,就是在除法的时候用一次就好了.还有就是两个模数相乘还要模一次. #include <cstdio> #include <cstdlib> #include <cstring> #inc…
http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 / 个数,就是矩阵B的b[i][j] 现在给出B,要求A 那么我们设A矩阵为a[1][1], a[1][2], a[1][3]..... 那么对于每一个b[i][j]我们有b[i][j] = (a[1][1] + a[1][2] + ... + ) / cnt 所以这样可以建议一条方程,然后guas…
EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 6246 Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons eac…
最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) f…
题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求出保存在矩阵中,根据字符串的长度len,那么就可以得到len行的矩阵,利用高斯消元解决这个线性方程组 #include <cstdio> #include <cstring> #include <iostream> using namespace std; ; //a[i]…
SETI Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1735   Accepted: 1085 Description For some years, quite a lot of work has been put into listening to electromagnetic radio signals received from space, in order to understand what civi…
大致题意: 有5*6个灯,每个灯只有亮和灭两种状态,分别用1和0表示.按下一盏灯的按钮,这盏灯包括它周围的四盏灯都会改变状态,0变成1,1变成0.现在给出5*6的矩阵代表当前状态,求一个能全部使灯灭的解. 分析: 题目已经提示我们,按两次和按零次是一样的效果,所以每个灯的解为0或者1.这样我们可以构造一个30*30的方程组,右边的常数列为灯的初始状态. 影响当前灯的状态的按钮有5个 a[i][j]+x[i][j]+x[i][j-1]+x[i-1][j]+x[i][j+1]+x[i][j+1]=0…