tf.train.examle函数】的更多相关文章

在自定义数据集中: example = tf.train.Example(features=tf.train.Features(feature={ 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])), 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels)) })) 下面简要谈一谈我对其的理解创建 Example…
tf.train.shuffle_batch (tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, name=None) 原创文章,请勿转载哦~!! 觉得有用的话,欢迎一起讨论相互学习~Follow Me Creates batches by randomly shuffling tensors. 通过随机打乱张量的顺序创建…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ------------------------------------------------------------------------------------------------------------------ tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具…
tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名.而创建tf的文件名队列就需要使用到 tf.train.slice_input_producer 函数. tf…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量.公司产能等的一种常用方法.移动平均法适用于即期预测.当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的.移动平均法根据预测时使用的各元素的权重不同 移动平均法是一种简单平滑预测技术,它的基本思…
TensorFlow的Session对象是支持多线程的,可以在同一个会话(Session)中创建多个线程,并行执行.在Session中的所有线程都必须能被同步终止,异常必须能被正确捕获并报告,会话终止的时候, 队列必须能被正确地关闭.TensorFlow提供了两个类来实现对Session中多线程的管理:tf.Coordinator和 tf.QueueRunner,这两个类往往一起使用. Coordinator类用来管理在Session中的多个线程,可以用来同时停止多个工作线程并且向那个在等待所有…
tf.train.batch的偶尔乱序问题 觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.train.batch的偶尔乱序问题 我们在通过tf.Reader读取文件后,都需要用batch函数将读取的数据根据预先设定的batch_size打包为一个个独立的batch方便我们进行学习. 常用的batch函数有tf.train.batch和tf.train.shuffle_batch函数.前者是将数据从前往后读取并顺序打包,后者则要进行乱序处理----即将读取的数据进行乱序后在组成批次…
原文地址: https://www.jianshu.com/p/8ba9cfc738c2 ------------------------------------------------------------------------------------------------ 1.          tf.train.slice_input_producer  函数,一种模型数据的排队输入方法. tf.train.slice_input_producer( tensor_list, num…
#### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,capacity=32, shared_name=None, name=None) tensor_list:如[images,labels] = [['img1','image2',…
  #### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,capacity=32, shared_name=None, name=None) tensor_list:如[images,labels] = [['img1','image2…
1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和…
这个函数可以参考吴恩达deeplearning.ai中的指数加权平均. 和指数加权平均不一样的是,tensorflow中提供的这个函数,能够让decay_rate随着step的变化而变化.(在训练初期的时候,较小,在训练后期的时候,回归到比较大的情况) 公式是这样的: decay= min(decay,(1+steps)/(10+steps)) 注:(吴恩达讲的修正方法是用计算出来的shadow_variable除以(1-beta^t),其中beta即为上面的decay_rate, 其中t越大,…
1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_size表示一个batch的大小,num_threads表示使用几个线程进行执行 import tensorflow as tf import numpy as np def generate_data(): num = 25 label = np.asarray(range(0, num)) im…
1. 配套使用: tf.train.Examples将数据转换为二进制,提升IO效率和方便管理 对于int类型 : tf.train.Examples(features=tf.train.Features(feature=tf.train.Feature(int64_list=tf.train.Int64List(value=[value])))) 对于bytes类型: tf.train.Examples(features=tf.train.Features(feature=tf.train.F…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
1. tf.train.Saver() tf.train.Saver()是一个类,提供了变量.模型(也称图Graph)的保存和恢复模型方法. TensorFlow是通过构造Graph的方式进行深度学习,任何操作(如卷积.池化等)都需要operator,保存和恢复操作也不例外. 在tf.train.Saver()类初始化时,用于保存和恢复的save和restore operator会被加入Graph.所以,下列类初始化操作应在搭建Graph时完成. saver = tf.train.Saver()…
exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 使用方式为 tf.train.exponential_decay( ) 在 Tensorflow 中,exponential_decay()是应用于学习率的指数衰减函数(实现指数衰减学习率). 在训练模型时,通常建议随着训练的进行逐步降低学习率.该函数需要`global_step`值来计算衰减的学习速…
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 """ 大多数情况下,您将能够使用高级功能,但有时您可能想要在较低的级别工作.例如,如果您想要实现一个新特性-一些新的内容,那么TensorFlow还没有包括它的高级实现, 比如LSTM中的批处理规范化--那么您可能需要知道一些事情. 这…
Batch Normalization: 使用tf.layers高级函数来构建带有Batch Normalization的神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 在使用tf.layers高级函数来构建神经网络中我们使用了tf.layers包构建了一个不包含有Batch Normalization结构的卷积神经网络模型作为本节模型的对比 本节中将使用tf.layers包实现包含有Batch N…
Batch Normalization: 使用tf.layers高级函数来构建神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 # Batch Normalization – Solutions # Batch Normalization 解决方案 """ 批量标准化在构建深度神经网络时最为有用.为了证明这一点,我们将创建一个具有20个卷积层的卷积神经网络,然后是一个完全连接的层.…
Training | TensorFlow tf 下以大写字母开头的含义为名词的一般表示一个类(class) 1. 优化器(optimizer) 优化器的基类(Optimizer base class)主要实现了两个接口,一是计算损失函数的梯度,二是将梯度作用于变量.tf.train 主要提供了如下的优化函数: tf.train.Optimizer tf.train.GradientDescentOptimizer tf.train.AdadeltaOpzimizer Ada delta tf.…
原文地址:https://blog.csdn.net/mrr1ght/article/details/81006343. 本文有删减. MonitoredTrainingSession定义 首先,tf.train.MonitorSession()从单词的字面意思理解是用于监控训练的回话,返回值是tf.train.MonitorSession()类的一个实例Object, tf.train.MonitorSession()会在下面讲. MonitoredTrainingSession( maste…
在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager_execution() # parameters UNITS = 8 class Encoder(tf.keras.Model): def __init__(self): super(Encoder, self).__init__() self.fc1 = tf.keras.layers.Dens…
exponential_decay(learning_rate,  global_steps, decay_steps, decay_rate, staircase=False, name=None) 使用方式: tf.tf.train.exponential_decay() 例子: tf.train.exponential_decay(self.config.e_lr, self.e_global_steps,self.config.decay_steps, self.config.decay…
tf.train.GradientDescentOptimizer(learning_rate, use_locking=False,name='GradientDescent') 参数: learning_rate: A Tensor or a floating point value. 要使用的学习率 use_locking: 要是True的话,就对于更新操作(update operations.)使用锁 name: 名字,可选,默认是"GradientDescent" minim…
import tensorflow as tf import tensorflow.contrib.slim as slim import rawpy import numpy as np import tensorflow as tf import struct import glob import os from PIL import Image import time __sony__ = 0 __huawei__ = 1 __blackberry__ = 2 __stage_raw2ra…
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参数说明:x,y表示需要比较的两组数 3.tf.cast(y, 'float') # 将布尔类型转换为数字类型 参数说明:y表示输入的数据,‘float’表示转换的数据类型 4.tf.argmax(y, 1) # 返回每一行的最大值的索引 参数说明:y表示输入数据,1表示每一行的最大值的索引,0表示每…
  TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model Checkmate is designed to be a simple drop-in solution for a very common Tensorflow use-case: keeping track of the best model checkpoints during training. The BestCheckpointSaver is a wrapper ar…