动手学习Pytorch(7)--LeNet】的更多相关文章

Convolutional Neural Networks 使用全连接层的局限性: 图像在同一列邻近的像素在这个向量中可能相距较远.它们构成的模式可能难以被模型识别. 对于大尺寸的输入图像,使用全连接层容易导致模型过大. 使用卷积层的优势: 卷积层保留输入形状. 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大.   LeNet 模型 LeNet分为卷积层块和全连接层块两个部分.下面我们分别介绍这两个模块. 卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图…
最近参加了伯禹教育的动手学习深度学习项目,现在对第一章(线性回归)部分进行一个总结. 这里从线性回归模型之从零开始的实现和使用pytorch的简洁两个部分进行总结. 损失函数,选取平方函数来评估误差,公式如下: 1)从零开始实现 首先设置真实的权重和偏差w,b.随机生成一个二维数组并由此生成对应的真实labels. num_inputs = 2 #二个自变量 num_examples = 1000 # set true weight and bias in order to generate c…
卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充.步幅.输入通道和输出通道的含义.   二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据.   二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter).卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘…
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法   模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error).通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似.计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损…
多层感知机(multi perceptron,MLP).对于普通的含隐藏层的感知机,由于其全连接层只是对数据做了仿射变换,而多个仿射变换的叠加仍然是一个仿射变换,即使添加更多的隐藏层,这种设计也只能与仅含输出层的单层神经网络等价.解决问题的一个方法是引入非线性变换,对隐藏变量使用非线性变化,然后作为下一个全连接层的输入,这个非线性函数被称为激活函数. 激活函数主要有ReLu.Sigmoid.tanh.其中ReLu计算简单,且不像其他两个哪个容易造成梯度消失,使用较多. 多层感知机pytorch实…
内容太多,捡重要的讲. 在分类问题中,通常用离散的数值表示类别,这里存在两个问题.1.输出值的范围不确定,很难判断值的意义.2.真实标签是离散值,这些离散值与不确定的范围的输出值之间的误差难以衡量. softmax运算符解决了这两个问题.它把输出值变成了值为正且和为1的概率分布. 对于一个分类问题,假设有a个特征,b个样本,c个输出,单层的全连接网络,那么有a*b个w(权重),c个b(偏差). 为了提升计算效率,常对小批量数据做矢量计算.softmax回归的矢量计算表达式如下. 计算loss用交…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的,对32*32的CIFAR10图片,网络结构做了微调:删除了最后一层最大池化,具体参见网络定义代码,这里采用VGG19,并加入了BN: ''' 创建VGG块 参数分别为输入通道数,输出通道数,卷积层个数,是否做最大池化 ''' def make_vgg_block(in_channel, out_ch…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFAR10,图片是32*32,尺寸远小于227*227,因此对网络结构和参数需做微调: 最后一个max-pool层删除 网络定义代码如下: class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面几篇文章介绍了MINIST,对这种简单图片的识别,LeNet-5可以达到99%的识别率. CIFAR10是另一个著名的深度学习图像分类识别数据集,比MINIST更复杂,而且是RGB彩色图片. 看看较简单的LeNet-5可以达到多少准确率.网络结构基本和前面MINIST代码中的差不多,主要是输入图片的通道数不同,代码如下: # -*- coding:utf-8 -*- u"""…
CNN的Pytorch实现(LeNet)   上次写了一篇CNN的详解,可是累坏了老僧我.写完后拿给朋友看,朋友说你这Pytorch的实现方式对于新人来讲会很不友好,然后反问我说里面所有的细节你都明白了吗.我想想,的确如此.那个源码是我当时<动手学pytorch>的时候整理的,里面有很多包装过的函数,对于新入门的人来讲,的确是个大问题.于是,痛定思痛的我决定重新写Pytorch实现这一部分,理论部分我就不多讲了,咱们直接分析代码,此代码是来自Pytorch官方给出的LeNet Model.你可…