sas单变量的特征分析】的更多相关文章

sas单变量的特征分析 大炮,我有个烦恼,我领导最近老叫我单变量结合因变量分析,但是都是分段分析,我总是写proc sql然后group by ,但是这个过程好无聊啊,有木有什么新的代码,让我可以分析的快点啊. 最近写了个宏,刚好可以解决你这个问题,在上代码之前,先来个结果图 詹大炮 这个结果对于分析来说是不好的,因为这个结果没啥实际意义,说白了就是跟因变量没关系,但是这个图我们不是要来讲变量怎么有用,我们要介绍的是这段代码最后呈现的一个结果是怎样的. 代码: %macro ChcAnalysi…
单变量重命名 b = rename(b,c(target="flag")) 单变量删除    b = b[,names(b)!='age'] 或者 b[,"age"] = NULL…
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住房价格.在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集: 我们来看这个数据集,如果你有一个朋友正想出售自己的房子,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱. 那么,你可以做的一件事就是构建一个模型,也许是条直线.从这个数据模型上来看,也许你可以告诉你的朋友,他大概…
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对应的出售价格,绘制出了数据集:假如…
1 对一维函数的求导及求特定函数处的变量值 %%最简单的一阶单变量函数进行求导 function usemyfunArray() %主函数必须位于最上方 clc clear syms x %syms x代表着声明符号变量x,只有声明了符号变量才可以进行符号运算,包括求导. %f(x)=sin(x)+x^2; %我们输入的要求导的函数 y = diff(sin(x)+x^); %代表着对单变量函数f(x)求一阶导数 disp('f(x)=sin(x)+x^2的导数是'); pretty(y); %…
面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 y代表输出变量 (x,y)代表训练集中的实例 h代表方案或者假设        h =  a x + b 输入变量输入给h  得到输出结果 因为只有一个特征   所以是单变量线性回归问题 a b就是代价参数    求ab就是建模    ab算完和实际的差距叫建模误差 寻找ab平方和最小点  就是代价…
Pandas单变量画图 Bar Chat Line Chart Area Chart Histogram df.plot.bar() df.plot.line() df.plot.area() df.plot.hist() 适合定类数据和小范围取值的定序数据 适合定序数据和定距数据 适合定序数据和定距数据 适合定距数据 pandas库是Python数据分析最核心的一个工具库:"杀手级特征",使整个生态系统融合在一起.除了数据读取.转换之外,也可以进行数据可视化.易于使用和富有表现力的p…
一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y)是一个训练样例, (x(i),y(i))是第 i个训练样例. 1.2 假设函数 使用某种学习算法对训练集的数据进行训练, 我们可以得到假设函数(Hypothesis Function), 如下图所示. 在房价的例子中,假设函数就是一个房价关于房子面积的函数.有了这个假设函数之后, 给定一个房子的面积…
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下降的直观理解 2.6  梯度下降的线性回归 2.7  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x          …
  单变量线性回归(Linear Regression with One Variable)¶ In [54]: #初始化工作 import random import numpy as np import matplotlib.pyplot as plt # This is a bit of magic to make matplotlib figures appear inline in the notebook # rather than in a new window. %matplot…