题目链接:https://codeforces.com/contest/1265/problem/E 题意:有n面镜子,你现从第一面镜子开始询问,每次问镜子"今天我是否美丽",每天可以询问一次,第 i 面镜子回答"美丽"的可能性是Pi/100,如果第i面镜子回答的是美丽,那么第下一天继续询问第i + 1面镜子.如果第i面镜子回答的是"不美丽",那么下一天你将重新从第1面镜子询问.如此过程直到所有的镜子都回答"美丽"才算结束,求…
题目链接 \(Description\) 给定a,b,x,p,求[1,x]中满足n*a^n ≡b (mod p) 的n的个数.\(1<=a,b<p\), \(p<=1e6+3\), \(x<=10^{12}\). \(Solution\) 边界很大,p比较小且为质数,考虑左边这个式子有没有循环节. 由费马小定理 \(a^{p-1} ≡a^0 ≡1(mod\ p)\),\(a^n\)的循环节(一定)为 \(p-1\):\(n%p\) 的循环节(一定)为p 所以 \(n*a^n\) 一…
E. Congruence Equation time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output Given an integer x. Your task is to find out how many positive integers n (1 ≤ n ≤ x) satisfy where a, b, p are all k…
C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Vitaly is a very weird man. He's got two favorite digits a and b. Vitaly calls a positive integer good, if the decimal…
题意 : 给出数 x (1 ≤ x ≤ 10^12 ),要求求出所有满足 1 ≤ n ≤ x 的 n 有多少个是满足 n*a^n  = b ( mod p ) 分析 : 首先 x 的范围太大了,所以使用枚举进行答案的查找是行不通的 观察给出的同余恒等式,发现这个次方数 n 毫无规律 自然想到化成费马小定理的形式 令 n = i*(p-1)+j 式子化成 根据费马小定理不难证明(猜???)周期为 p*(p-1) ==> 来自 Tutorial,反正我是不知道怎么证,貌似评论下面有大神用欧拉函数来证…
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=…
又见斐波那契数列 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 斐波那契数列大家应该很熟悉了吧.下面给大家引入一种新的斐波那契数列:M斐波那契数列. M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,聪明的你能求出F[n]的值吗?   输入 输入包含多组测试数据:每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n &l…
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友就打表找到公式了,然后我就写了一个快速幂加个费马小定理就过了去看别的题了,赛后找到了一个很不错的博客:传送门,原来这道题也可以用DP+矩阵快速幂AC.下面说下组合数学的做法: 首先一共有4^n种情况,我们减去不符合条件的情况就行了,从中取k个进行染红绿色一共C(n,k)种情况,剩下的蓝黄色一共有2^…
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29). Take X = 1 for an example. The positive integer divisors of 2004^1…
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪…