快速读写模板(int)】的更多相关文章

一.快速读入模板(int) inline int read(int x){ char ch=getchar(); int x=0,f=1; while(ch>='9'||ch<='0'){ if(ch=='-') f=-1; ch=getchar(); } while(ch>='0'&&ch<='9'){ x=x*10+ch-'0'; ch=getchar(); } return x*f; } 二.快速输出模板(int) inline void write(int…
a^b Description 求 aa 的 bb 次方对 pp 取模的值. 输入格式 三个整数 a,b,pa,b,p ,在同一行用空格隔开. 输出格式 输出一个整数,表示a^b mod p的值. 数据范围 1≤a,b,p≤109 输入样例:  3 2 7 输出样例: 2 题解 快速幂模板,交了结果WA了 需要注意的是 123456789 0 1 这个数据,1%1 = 0 代码 #include<bits/stdc++.h> using namespace std; typedef long…
题目:http://poj.org/problem?id=3070 矩阵快速幂模板.mod写到乘法的定义部分就行了. 别忘了 I ( ) 和 i n i t ( ) 要传引用! #include<iostream> #include<cstdio> #include<cstring> using namespace std; ; struct Matrix{ ][]; Matrix operator *(const Matrix &b)const { Matri…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1757 题目大意: 求递推式第k项模m If x < 10 f(x) = x.If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);And ai(0<=i<=9) can only be 0 or 1 . 解题思路: 构建矩阵 直接用矩阵快速幂模板求解 注意,小于10的时候不能直接输出…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1113 题意:中文题诶- 思路:矩阵快速幂模板 代码: #include <iostream> #define ll long long using namespace std; ; ; int n, m; typedef struct node{ ll x[MAXN][MAXN]; }matrix; matrix matrix_multi(matrix a,…
Qt Windows 下快速读写Excel指南 很多人搜如何读写excel都会看到用QAxObject来进行操作,很多人试了之后都会发现一个问题,就是慢,非常缓慢!因此很多人得出结论是QAxObject读写excel方法不可取,效率低. 后来我曾试过用ODBC等数据库类型的接口进行读写,遇到中文嗝屁不说,超大的excel还是会读取速度慢. 最后,看了一些开源的代码后发现,Windows下读取excel,还是用QAxObject最快!没错,就是用QAxObject读写最快!!!(读取10万单元格2…
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<cstdio> #include<cstring> using namespace std; typedef long long LL; ; int n; LL k; struct Mat{ LL m[][]; }a,e; Mat mul(Mat& x,Mat& y){ Mat…
洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 矩阵快速幂模板:…
//一种简单快速的模板解析方法,活用with var parseTpl = function( str, data ) { var tmpl = 'var __p=[];' + 'with(obj||{}){__p.push(\'' + str.replace( /\\/g, '\\\\' ) .replace( /'/g, '\\\'' ) .replace( /<%=([\s\S]+?)%>/g, function( match, code ) { return '\',' + code.…
eclipse中mybatis得mapper文件不提示(mybatis-3-mapper.dtd,mybatis-3-config.dtd) 1.下载该文件到你的硬盘文件夹下 2.windows -->preferences-->xml-->xml catalog-->add-->fileSystem.. 后再设置 key type-->public id key-->加入xml文件下的-//mybatis.org//DTD Mapper 3.0//EN OK 3…
前言 Android studio 有提供快速生成模板代码的功能,其实这个功能也可以自定义配置.此篇博客将讲解如何使用此功能 进入Settings 选择 Editor > Live Templates 创建一个自己的组 为了不与Android studio已经自带的模型代码混淆,我们创建一个自己的组来管理自己的模板代码,请看下图: 下图点击 + 号 ,有2个选择 1.第一个选择是在当前组里新建一个模板代码 2.第二个就是生成一个组,我已经创建了一个叫user的组 编辑代码模板 下图就是生成模板代…
/* 矩阵快速幂: 第n个人如果是m,有f(n-1)种合法结果 第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm 对于ffm第n-3个人只能是m那么有f(n-4)种 对于fmm那么对于第n-3个人没有限制有f(n-3)种 顾f(n)=f(n-1)+f(n-3)+f(n-4); 求出前四个结果分别是 a[1]=2;a[2]=4;a[3]=6;a[4]=9; A=|a[4],a[3],a[2],a[1]| 可以构造矩阵 |1 1 0 0 | B= |0…
Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequen…
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面. Solution:  一看矩阵快速幂,再一看怎么多一个变项?\(⌊ \frac{p}{n}⌋\)?  我去,\(⌊ \frac{p}{n}⌋\)这不是前几天写过的一道除法分块经典题吗?  关于除法分块,请看这里:GYM101652  然后,就没有然后了~ AC_Code: #include<bits/stdc++.h&…
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. Given A, B, and n, you are to calculate the value of f(n).   Input The input consists of multiple test cases. Each test case…
http://poj.org/problem?id=1995 简单的快速幂问题 要注意num每次加过以后也要取余,否则会出问题 #include<iostream> #include<cstdio> using namespace std; typedef long long ll; ll mod_pow(ll x,ll n,ll mod) { ll res=; ) { ) res=res*x%mod; x=x*x%mod; n>>=; } return res; }…
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N项.注意负数取模的方式:-1%(10^9+7)=10^9+6. 解题思路: 首先解出快速幂矩阵.以f3为例. [f2]  * [1 -1] = [f2-f1]=[f3]  (幂1次) [f1]  * [1  0]     [f2]      [f2] 于是fn=[f2] *[1 -1]^(n-2)…
分析:求Map^k,刚开始没有用快速幂,TLE了   代码如下: ==================================================================================================== #include<stdio.h> #include<string.h> #include<algorithm> #include<queue> using namespace std; ; ;…
求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2]         f[n-1]  f[n-2]  f[n-3]         1    1     0 0     0       0         =    0          0         0     *      1    0     1 0     0       0               0           0        0            1     0…
Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据.接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容. Output对应每组数据,输出Tr(A^k)%9973. Sample Input22 21 00 13 999999991 2 34…
题意:题意很简单,不多说了. 思路: |f(10) |       |a0 a1 a2 ...a8 a9|    |f(9)|| f(9)  |       | 1   0   0 ... 0    0 |    |f(8)|| .....  |   =  | ..    ...    ...   ...    |     | ..   || f(2) |        | 0   0   0 ... 0    0|     |f(1)|| f(1) | | 0   0   0 ... 1  …
题目大意:原题链接  题解链接 解题思路:令x=x-1代入原等式得到新的等式,两式相加,将sin()部分抵消掉,得到只含有f(x)的状态转移方程f(x+1)=f(x)+f(x-2)+f(x-3),然后用矩阵快速幂即可 #include<cstdio> #include<cstring> typedef long long ll; ; ]; ]={,,,-}; struct Mat { ll mat[][]; }res; Mat Mult(Mat a,Mat b) { Mat c;…
hdu-4549 求幂大法.矩阵快速幂.快速幂 题目 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 6217 Accepted Submission(s): 1902 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] *…
什么是Feather? Feature是一种文件格式,支持R语言和Python的交互式存储,速度更快.目前支持R语言的data.frame和Python pandas 的DataFrame. Feather收到了Apache arrow 项目的支持,Apache Arrow是Apache基金会下一个全新的开源项目,同时也是顶级项目.它的目的是作为一个跨平台的数据层来加快大数据分析项目的运行速度. Feather的特点 feather是一个用于存储数据框的快速的,轻量级的,易于使用的二进制文件格式…
hdu1575   TrA 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 都不需要构造矩阵,矩阵是题目给的,直接套模板,把对角线上的数相加就好了,记得取膜就好了. //Author: xiaowuga #include <bits/stdc++.h> #define maxx INT_MAX #define minn INT_MIN #define inf 0x3f3f3f3f #define maxn 12 #define MOD 9…
题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include<iostream> #include<stdio.h> using namespace std; ; struct mat{ ][]; }; mat operator * (mat a, mat b){ //重载乘号,同时将数据mod10000 mat ret; ; i < ; i++…
讲解:http://www.cnblogs.com/SYCstudio/p/7211050.html 给定n*n的矩阵A,求A^k https://www.luogu.org/problem/show?pid=3390 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #d…
//求x^nint ans=1;while(n){ if(n&1) ans=ans*x; x*=x; n>>=1;} 快速幂就是快速算底数的n次幂.其时间复杂度为 O(logN), 与朴素的O(N)相比效率有了极大的提高. 例如 11的二进制是1011 11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1 因此,我们将a¹¹转化为算 下面看一个例题…
洛谷 P3803 [模板]多项式乘法(FFT)传送门 存个板子,完全弄懂之后找机会再写个详解. #include<cstdio> #include<cmath> struct cpx { double rl,im; friend cpx operator + (cpx q,cpx w) { return (cpx){q.rl+w.rl,q.im+w.im}; } friend cpx operator - (cpx q,cpx w) { return (cpx){q.rl-w.rl…
思路:快速幂裸题. //注意用long,否则会超范围 Problem Description 集训进行了将近2个礼拜,这段时间以恢复性训练为主,我一直在密切关注大家的训练情况,目前为止,对大家的表现相当满意,首先是绝大部分队员的训练积极性很高,其次,都很遵守集训纪律,最后,老队员也起到了很好的带头作用,这里特别感谢为这次DP专题练习赛提供题目和测试数据的集训队队长xhd同学. 特别高兴的是,跟随集训队训练的一批新队员表现非常好,进步也比较显著,特别是训练态度大大超出我的预期,我敢说,如果各位能如…