hdu1722 bjfu1258 辗转相除法】的更多相关文章

这题就是个公式,代码极简单.但我想,真正明白这题原理的人并不多.很多人只是随便网上一搜,找到公式a了就行,其实这样对自己几乎没有提高. 鉴于网上关于这题的解题报告中几乎没有讲解原理的,我就多说几句,也不是严格的证明,给大家分享一下. 题目是说有p人或q人吃蛋糕,需要提前把蛋糕切好而能同时满足这两种情况,使蛋糕的块数最少.为了方便表述,不妨设p < q 首先,记p和q的最小公倍数为m,则把蛋糕平均切成m块,一定是能满足条件的,但这不是最优解,暂记为解法①. 我们的工作就是把解法①的这m块中的一些尽…
辗转相除法最大的用途就是用来求两个数的最大公约数. 用(a,b)来表示a和b的最大公约数. 有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c). (证明过程请参考其它资料) 例:求 15750 与27216的最大公约数. 解: ∵27216=15750×1+11466 ∴(15750,27216)=(15750,11466) ∵15750=11466×1+4284 ∴(15750,11466)=(11466,4284) ∵11466=4284×2+2898 ∴(11466…
#include<iostream> using namespace std; //不推荐用goto,当然用它更快 //辗转相除法求两数的最大公约数 int gcd(long int a,long int b){ int x=a<b?a:b; //获得较小者,用来做循环的约束值 ;i<x;x++){ //循环 if(a>b){ int r=a%b;//取余数 ){//能否整除判断 return b;//可以便输出 }else{//否则进行下一轮的算法 a=b,b=r; } }…
什么是辗转相除法? 辗转相除法(又名欧几里德算法),它主要用于求两个正整数的最大公约数.是已知的最古老的算法. 用辗转相除法求132和72的最大公约数的步骤: 132 / 72 = 1 ... 60 72  /  60 = 1 ... 12 60 /  12  = 5 所以他们的最大公约数就是12. 如何实现辗转相除法? 我们把要求的两个数定为a和b(a > b). 首先算1.a / b = c ... r 接着2.a = b, b = r,并判断r是否是0.若不为零则重复1,若为0则输出除数,…
两个数的最大公约数:不能大于两个数中的最小值,算法口诀:小的给大的,余数给小的,整除返回小的,即最大公约数,(res=max%min)==0?  max=min,min=res return min; 两个数的最小公倍数:等于两数之和除以两个数的最大公约数 a*b/(LCM(a,b)); #include <iostream> using namespace std; /*求最大公约数,辗转相除法来求最小公倍数*/ int getLCM(int a, int b) { int max = (a…
题目地址:http://ac.jobdu.com/problem.php?pid=1056 题目描述: 输入两个正整数,求其最大公约数. 输入: 测试数据有多组,每组输入两个正整数. 输出: 对于每组输入,请输出其最大公约数. 样例输入: 49 14 样例输出: 7 来源: 2011年哈尔滨工业大学计算机研究生机试真题 #include <stdio.h> int gcd1 (int a, int b){ if (b == 0) return a; else return gcd1 (b, a…
辗转相除法,又被称为欧几里德(Euclidean)算法, 是求最大公约数的算法. 当然也可以求最小公倍数. 算法描述 两个数a,b的最大公约数记为GCD(a,b).a,b的最大公约数是两个数的公共素因子的乘积.如462可以分解成2 × 3 × 7 × 11:1071可以分解成3 × 3 × 7 × 17.462和1071的最大公约数等于它们共有的素因数的乘积3 × 7 = 21.如果两数没有公共的素因数,那么它们的最大公约数是1,也即这两个数互素,即GCD(a,b)=1.另g=GCD(a,b),…
Description The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.                          Input Input will consist…
#include<stdio.h> #include<string.h> #include<string.h> ],str2[]; int len; int cal(char *str1,char *str2) { ,i; ;str1[i]&&str2[i];i++) { if(str1[i]==str2[i]) ret++; } return ret; } int max(int a, int b) { int z; z=(a>b)?a:b; r…
辗转相除法 大纲: 问题 原理 反思 1.     问题 一个试题,请完成以下填空 下列程序是利用辗转相除法求H.C.F(最大公约数) include <stdio.h> int main(){ int m,n,r; scanf("%d%d",&m,&n); r=[?]; ]){ m=[?];n=r;r=[?]; printf("h.c.f is %d",n); ; } 应试时未想出解 为什么想不出? 首先是不知道什么是辗转相除法,辗转?…
本文写于2017-01-18,从老账号迁移到本账号,原文地址:https://www.cnblogs.com/huangweiyang/p/6297874.html 今天在牛客网上做了一道题,题意就是求左旋转字符串.我使用辗转相除法解之,一次性AC通过.实话说,每次写算法一次性通过,甚至一点编译错误都没有,我觉得这就是对我最好的嘉奖. 题目描述: 汇编语言中有一种移位指令叫做循环左移(ROL),现在有个简单的任务,就是用字符串模拟这个指令的运算结果.对于一个给定的字符序列S,请你把其循环左移K位…
辗转相除法,又称欧几里得算法.两个正整数a和b(a>b),它们的最大公约数等于余数c和较小的数b之间的最大公约数.最小公倍数=两数之积/最大公约数 #include <stdio.h> int get1(int a, int b) { if (a < b) { int c = a; a = b; b = c; } while (a%b != 0) { b = a%b; a = b; } return b; } int get2(int a,int b) { return a*b /…
源自:百度百科 辗转相除法 辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法. 例如,求(,): ∵ ÷=(余319) ∴(,)=(,): ∵ ÷=(余58) ∴(,)=(,): ∵ ÷=(余29) ∴ (,)=(,): ∵ ÷=(余0) ∴ (,)= : ∴ (,)=. 用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止.最后所得的那个最大公约数,就是所有这些数的最大公约数…
 1.来源     设两数为a.b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q......r1(0≤r1).若r1=0,则(a,b)=b:若r1≠0,则再用b除以r1,得b÷r1=q......r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除以r2,……如此下去,直到能整除为止.其最后一个为被除数的余数的除数即为(a, b). 例如:a=25,b=15,a/b=1......10,b/10=1......5,10/5=2.......…
题目 给你两个正整数a和b, 输出它们的最大公约数 辗转相除法 辗转相除法的步骤 def gcd(b,a): b,a=a,b%a if a==0: return b else: return gcd(b,a) 即就是取假设b与a不能整除,就取a和b除以a的余数再考察是个递归的思路. 理解 能够从两个角度去理解辗转相除法 1.举例法 一张长方形纸,长2703厘米.宽1113厘米.要把它截成若干个相同大小的正方形,纸张不能有剩余且正方形的边长要尽可能大.问:这样的正方形的边长是多少厘米? 解答: 可…
2018-03-11 17:39:22 一.辗转相除法 在数学中,辗转相除法,又称欧几里得算法(英语:Euclidean algorithm),是求最大公约数的算法.辗转相除法首次出现于欧几里得的<几何原本>(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的<九章算术>.辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数.例如,252和105的最大公约数是21(252 = 21 × 12:105 = 21 × 5):因为252 − 105…
[洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:1.P,Q是正整数;2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入格式:二个正整数x0,y0 输出格式:一个数,表示求出满足条件的P,Q的个数 Solution 1.由最大公约数的定义我们得到:存在k1,k2∈R,使P=k1x0,Q…
[CodePlus 2017 11月赛]晨跑 Description "无体育,不清华"."每天锻炼一小时,健康工作五十年,幸福生活一辈子".在清华,体育运动绝对是同学们生活中不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不过由于种种原因,每天都早起去跑步不太现实,所以王队长决定每a天晨跑一次.换句话说,假如王队长某天早起去跑了步,之后他会休息a−1 天,然后第a天继续去晨跑,并以此类推. 王队长的好朋友小钦和小针深受王队长坚持锻炼的鼓舞,并决…
数学背景: 整除的定义: 任给两个整数a,b,其中b≠0,如果存在一个整数q使得等式                                        a = bq 成立,我们就说是b整除a,记做b|a.   性质1:如果c|a,c|b,且对于任意的整数m,n,则有c|ma + nb   证明: 利用上述定义进行证明             因为c|a ,c|b,所以有a = c*q1,b = c*q2,             对于任意m,n有,ma+nb = m(c*q1) +…
辗转相除法(又称欧几里得算法)是求最大公因数的算法 要求a,b的最大公约数(a>b),我们可以递归地求b,a%b的最大公约数,直到其中一个数变成0,这时另一个数就是a,b的最大公约数. C++实现: int gcd(int a,int b){ retuen b?gcd(b,a%b):a; } 或: while(b!=0)  {  temp=a%b;   a=b;   b=temp; } 证明:(引自百度百科) 设两数为a.b(b<a),用gcd(a,b)表示a,b的最大公约数,r=a (mod…
求最大公因数(辗转相除法&更相减损术) 辗转相除法 又名欧几里得算法 ,其原理其实是基于这个定理:\(gcd(a,b)=gcd(b,a\%b)\),详细证明,而任何数与0的最大公约数是它本身 (递归终止条件),所以可以如下递归求出两数最大公因数: \[ f(a,b)=\left\{ \begin{array}{lll} b \qquad a\%b=0\\ f(b,a\%b) \end{array} \right. \] 递归实现(C++): int f(int a, int b){ return…
4031: [HEOI2015]小Z的房间 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一些相邻房间的墙,使得所有房间能够互相到达.在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙).同时,你不希望在…
AOJ0005 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0005 题意 给定两个数,求其最大公约数GCD以及最小公倍数LCM. 思路 求最大公约数一般用辗转相除法,然后就得到了最小公倍数. 更详细的分析参见我的博客文章: 数论--最大公约数和最小公倍数算法 代码 #include <iostream> #include <cstdio> #include <algorithm> using nam…
从错误中学python(4)——最小公约数与辗转相除法 网上看到一篇很简洁辗转相除法的写法:不用判断a,b的大小 def gcp(a, b): while(b%a!=0): a,b=b%a,a return a…
/*问题描述:线段上的格点给定平面上的两个格点 P1 = (x1, y1) ; P2 = (x2, y2) 线段P1 P2上,除P1 和 P2以外一共有几个格点*//*分析过程在格点上画P1(0,5) P2(5,0) 连接起来发现 这条线上的经过的格子的格点都在P1 P2这条线段上将其不称 P1 P2为斜边的直角三角形 发现因为每一个小的三角形 和大三角形都是相似再画P1(0, 8) P2(3,4) 这条线段上没有格点 但是如果向下扩展成一个边之比为2的一个相似三角形 得到P1(0, 8) P2…
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7…
题目 设 $ab^{-1} = x(mod \ p)$,给出 $x,p$,要求最小的 $b$,其中 $0< a < b, \ 1 < x<p,\ 3 \leq x\leq {10}^{15}$. 分析 比赛中,首先就想用扩展欧几里得解出一个可行 $b$,然后枚举 $kb \% p$ 的最小值,然后发现复杂度爆炸. 看题解,用了一种非常巧妙地方法, $\because 0 < a=bx-pt < b$ $\therefore \frac{p}{x} < \frac{…
证明过程: 假设用f(x, y)表示x,y的最大公约数,取k = x/y,b = x%y,则x = ky + b,如果一个数能够同时整除x和y,则必能同时整除b和y:而能够同时整除b和y的数也必能同时整除x和y,即x和y的公约数与b和y的公约数是相同的,其最大公约数也是相同的,则有f(x, y)= f(y, x%y)(y > 0),如此便可把原问题转化为求两个更小数的最大公约数,直到其中一个数为0,剩下的另外一个数就是两者最大的公约数.   代码: 用辗转相除法求a b 最大公约数(a b谁大谁…
辗转相除法,一种求最大公约数的算法 已知:A / B = C ······ R  (A.B.C.R皆是整数) 假设:D是A的余数,D也是B的余数,那么D就是A和B的公约数 D是A和B的约数,则A和B是D的倍数,B * C也是D的倍数 既然A与B*C都是D的倍数,那么A与B*C的差也是D的倍数 A - B*C = R 所以R也是D的倍数 如果D是A或B的公约数,那么D也是B和R的公约数 故:(A,B)= (B,R) 由以上证明则可以求出最大的公约数 例如:求72和28的最大公约数 72 / 28…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1722 题意:要使一块蛋糕既能均分给a个人,又能均分给b个人,问至少需要分成几块(不需要每块都一样大小): 思路:假设先将蛋糕切c=gcd(a,b)块,那么再将每块分成a/c块可以可以得到a块蛋糕,再将蛋糕合起来,然后分成b块,这次分的过程中会有c块蛋糕是之前切好的,也就是总共要分成a+b-gcd(a, b)块: 代码: #include <iostream> #include <stdio.…