Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13959   Accepted: 3433 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 99…
[POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分  整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   当中pi均为素数 约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的全部因子之和为 S = (1+p1+p1^2+p1^3+...p1^k1…
Read the program below carefully then answer the question. #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include<iostream> #include <cstring> #include <cmath> #include <algorithm> #inclu…
题意:一个一维数组,3种操作: a:  第i个数+1,b: 第i个数=0 ,c::交换某俩处的数.  由三种基本操作构成一组序列,反复该序列m次(m<10^9),问结果 属于一种综合操作反复型: 每次乘以一矩阵T,相当于做一次操作.关键是构造这个矩阵. 先构造最初矩阵A :  1*(n +1) ={1,0,0,0...} ,  第一个一时为了操作第一行数的, T的构造:初始是N+1 * N+1单位阵 这样恰好操作第i个数, +1,就在第0行的第 i个加1:交换就相应列交换,清零就相应列清0. a…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted: 6724 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test cas…
A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2478 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 &l…
POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然就是0了,需要特判一下,但是poj好像没有为0的数据,能AC.先不改了.) 后来看了好多人的博客,发现很少用费马小定理写的,或者写的代码我看不下去..就先用那个什么二分等比数列写了一下. 过程也不说了,很多博客都说了.([1][2]): #include<iostream> #include<…
相关公式 ①等差数列的\(S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2}\) ②等比数列的\(S_n=\left\{\begin{array}{l}{na_1,q=1}\\{\cfrac{a_1\cdot (1-q^n)}{1-q}=\cfrac{a_1-a_nq}{1-q},q\neq 1}\end{array}\right.\) ③\(1+2+3+\cdots+ n=\cfrac{n(n+1)}{2}\): ④\(1+3+5+\…
一.方法依据: 已知数列\(\{a_n\}\)是等差数列,首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\),则求\(S_n\)的最值常用方法有两种: (1).函数法:由于\(S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)}{2}d=\cfrac{d}{2}n^2+(a_1-\cfrac{d}{2})n\), 令\(A=\cfrac{d}{2}\),\(B=a_1-\cfrac{d}{2}\),则\(S_n=An^2+Bn\), 即…
等差数列 等比数列 常见的前n项和…