首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Pandas简易入门(二)
】的更多相关文章
Pandas简易入门(二)
目录: 处理缺失数据 制作透视图 删除含空数据的行和列 多行索引 使用apply函数 本节主要介绍如何处理缺失的数据,可以参考原文:https://www.dataquest.io/mission/12/working-with-missing-data 本节要处理的数据来自于泰坦尼克号的生存者名单,它的数据如下 pclass,survived,name,sex,age,sibsp,parch,ticket,fare,cabin,embarked,bo…
Pandas简易入门(一)
目录: 读取数据 索引 选择数据 简单运算 声明,本文引用于:https://www.dataquest.io/mission/8/introduction-to-pandas (建议阅读原文) Pandas使用一个二维的数据结构DataFrame来表示表格式的数据,相比较于Numpy,Pandas可以存储混合的数据结构,同时使用NaN来表示缺失的数据,而不用像Numpy一样要手工处理缺失的数据,并且Pandas使用轴标签来表示行和列 读取数据 Pandas使用函数read_csv()来读取cs…
Pandas简易入门(四)
本节主要介绍一下Pandas的另一个数据结构:DataFrame,本文的内容来源:https://www.dataquest.io/mission/147/pandas-internals-dataframes 在上一节中已经介绍过了Series对象,Series对象可以理解为由一列索引和一列值,共两列数据组成的结构.而DataFrame就是由一列索引和多列值组成的结构,其中,在DataFrame中的每一列都是一个Series对象. 行选择 不管何时,你调用了一个方法返回或者打印一个Data…
Pandas简易入门(三)
本节主要介绍一下Pandas的数据结构,本文引用的网址:https://www.dataquest.io/mission/146/pandas-internals-series 本文所使用的数据来自于:https://github.com/fivethirtyeight/data/tree/master/fandango 该数据主要描述了一些电影的烂番茄评分情况 数据结构 在Pandas中,主要有三种重要的数据结构: Series(值的集合) DataFrame(Series的集合) Pan…
Pandas 快速入门(二)
本文的例子需要一些特殊设置,具体可以参考 Pandas快速入门(一) 数据清理和转换 我们在进行数据处理时,拿到的数据可能不符合我们的要求.有很多种情况,包括部分数据缺失,一些数据的格式不正确,一些数据的标注问题等等.对于这些数据,我们在开始分析之前必须进行必要的整理.清理. 清理和转换的过程中用到最对的包括判断是否存在空值(obj.isnull),删除空值(dropna).填充空值(fillna).大小写转换.文字替换(replace)等等.我这里挑几个典型的场景来学习一下. 判断是否存在有空…
机器学习简易入门(四)- logistic回归
摘要:使用logistic回归来预测某个人的入学申请是否会被接受 声明:(本文的内容非原创,但经过本人翻译和总结而来,转载请注明出处) 本文内容来源:https://www.dataquest.io/mission/59/logistic-regression 原始数据展示 这是一份美国入学申请的录取记录表,admit – 是否录取,1代表录取,0代表否定:gpa – gpa成绩,gre – 绩点 import pandas admissions = pandas.read_csv('adm…
不用搭环境的10分钟AngularJS指令简易入门01(含例子)
不用搭环境的10分钟AngularJS指令简易入门01(含例子) `#不用搭环境系列AngularJS教程01,前端新手也可以轻松入坑~阅读本文大概需要10分钟~` AngularJS的指令是一大特色之一,可以将控件组合封装并简易调用.不难入门,而且用起来很爽!这次我带各位童鞋一步步学会AngularJS的指令系统. 前置技能需求:HTML.CSS.JS基础,没错不用会Angular也行!(逃 一.史上最简单入门 指令是 扩展具有自定义功能的 HTML 元素的途径.换个说法,简单来说就是把一堆组…
pandas教程1:pandas数据结构入门
pandas是一个用于进行python科学计算的常用库,包含高级的数据结构和精巧的工具,使得在Python中处理数据非常快速和简单.pandas建造在NumPy之上,它使得以NumPy为中心的应用很容易使用. pandas为数据提供了一些解决方案: 支持自动或明确的数据对齐的带有标签轴的数据结构.这可以防止由数据不对齐引起的常见错误,并可以处理不同来源的不同索引数据. 整合的时间序列功能. 以相同的数据结构来处理时间序列和非时间序列. 支持传递元数据(坐标轴标签)的算术运算和缩减. 灵活处理丢失…
Python pandas快速入门
Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来自官网十分钟教学 Pandas的主要数据结构:DimensionsNameDescription1Series1D labeled homogeneously-typed array2DataFrameGeneral 2D labeled, size-mutable tabular structur…
【原创】NIO框架入门(二):服务端基于MINA2的UDP双向通信Demo演示
前言 NIO框架的流行,使得开发大并发.高性能的互联网服务端成为可能.这其中最流行的无非就是MINA和Netty了,MINA目前的主要版本是MINA2.而Netty的主要版本是Netty3和Netty4(Netty5已经被取消开发了:详见此文). 本文将演示的是一个基于MINA2的UDP服务端和一个标准UDP客户端(Java实现)双向通信的完整例子. 实际上,MINA2的官方代码里有完整的UDP通信Demo代码,但Demo里客户端是需要依赖MINA2的客户端库的,而如果简单地去掉MINA2的li…