C# 高精度求幂 poj1001】的更多相关文章

高精度求幂 public static char[] exponentiation(string a,int r) { ]; string b = ""; string c = a; ; i < r-; i++) { aa = acm.Quadrature(c, a); b = ""; foreach (var item in aa) { b += item; } c = b; } return aa; }…
这道题目是实质上就是高精度的乘法,虽然是带小数点的数多少次幂,但是开始我们需要将它变为整数进行求幂,然后再加上小数点,然后要考虑前导0,有效数位问题,做的时候要十分的小心 #include<iostream> #include<string> #include<cmath> using namespace std; ]; //输入不会超过6位 ]; //计算的结果 ]; int main() { string decim; int ep,i,j,k,numpos,val…
The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 980    Accepted Submission(s): 301 Problem Description Chinese people think of '8' as the lucky digit. Bob also likes digit '8…
分别用迭代方法和递归方法实现求幂迭代方法的时间复杂度为O(n),空间复杂度为O(1)递归方法1的时间复杂度为O(logn),空间复杂度为O(logn)递归方法2的时间复杂度为O(n),空间复杂度为O(n)#!/usr/bin/env python #coding -*- utf:8 -*- def pow_1(x, n, choice): if choice==0: return pow_1_iter(x, n, 1) if choice==1: return pow_1_rec(x, n) #…
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k).N'为N的k进制表示的各位数字之和.输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000) 输入: 每组测试数据包括一行,x(0<…
接触ACM没几天,向各路大神求教,听说ACM主要是研究算法,所以便开始了苦逼的算法学习之路.话不多说,RT所示,学习快速求幂. 在头文件<math.h>或是<cmath>中,double pow( double x, double y );函数是用来快速求x^y,于是便从pow函数来说起,以下大体上是pow的函数代码: int pow(int x, int n) { int num = 1; while (n != 0){ num = num *x; n = n -1; } ret…
做TopCoder SRM 576 D2 L3 题目时,程序有个地方需要对一个数大量求幂并取余,导致程序运行时间很长,看了Editoral之后,发现一个超级高效的求幂并取余的算法,之前做System test时,程序运行时间(最慢的测试用例)为500ms左右,使用此方法之后,运行时间直接减为20ms,快了20多倍,所以将此方法记录下来. 算法时间复杂度为 log(n). 这个算法其实就是  数据结构与算法分析 (Weiss 著) 一书中开头的那个递归求幂算法的非递归版,简洁明了. 代码如下: /…
次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 求a的b次方对c取余的值   输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) 输出 输出a的b次方对c取余之后的结果 样例输入 3 2 3 5 3 100 10 11 12345 12345 样例输出 3 1 10481 /* Name: NYOJ--102--次方求模 Copyright: ©20…
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 题意: 求…
一,两种不同的求幂运算 求解x^n(x 的 n 次方) ①使用递归,代码如下: private static long pow(int x, int n){ if(n == 0) return 1; if(n == 1) return x; if(n % 2 == 0) return pow(x * x, n / 2); else return pow(x * x, n / 2) * x; } 分析: 每次递归,使得问题的规模减半.2到6行操作的复杂度为O(1),第7行pow函数里面的x*x操作…
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b /= ; } return ans; } 快速幂取模运算 公式: 最终版算法: int PowerMod(int a, int b, int c) { ; a = a % c; ) { = = )ans = (ans * a) % c; b = b/; a = (a * a) % c; } retur…
一个引子 如何求得a的b次幂呢,那还不简单,一个for循环就可以实现! void main(void) { int a, b; ; cin >> a >> b; ; i <= b; i++) { ans *= a; } cout << ans; } 那么如何快速的求得a的b次幂呢?上面的代码还可以优化吗? 当然是ok的!下面就介绍一种方法-二分求幂. 二分求幂 所谓二分求幂,即是将b次幂用二进制表示,当二进制位k位为1时,需要累乘a的2^k次方. 下面优化一下上面…
一直以来,在前端开发时使用的基本都是ES5,以及少量的ES6.3月份换工作面试时,发现一些比较大的公司,对ES6比较重视,阿里的面试官直接问ES7和ES8,对于从未接触过人来说,完全是灾难.由此也显现出我的一个弊端,埋头苦干是没用的,还要着眼未来,紧盯发展趋势.近期在补习ES6.ES7和ES8. ES7仅仅新增了求幂运算符(**)和Array.prototype.includes()方法两项内容,大大降低了学习难度,也预示着ES标准进入了小步快跑.多次少量更新的发展阶段. 1.求幂运算符(**)…
hdu-4549 求幂大法.矩阵快速幂.快速幂 题目 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 6217 Accepted Submission(s): 1902 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] *…
牛顿迭代 若 \[G(F_0(x))\equiv 0(mod\ x^{2^t})\] 牛顿迭代 \[F(x)\equiv F_0(x)-\frac{G(F_0(x))}{G'(F_0(x))}(mod\ x^{2^{t+1}})\] 以下多数都可以牛顿迭代公式一步得到 多项式求逆 给定\(A(x)\)求满足\(A(x)*B(x)=1\)的\(B(x)\) 写成 \[A(x)*B(x)=1(mod \ x^n)\] 我们会求\[A(x)*B(x)=1(mod \ x^1)\] 然后我们考虑求\[A…
zhx's contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1867    Accepted Submission(s): 596 Problem Description As one of the most powerful brushes, zhx is required to give his juniors n p…
题面 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的:点权为\(1\)的结点是叶子结点:对于任一点权大于\(1\)的结点\(u\),\(u\)的孩子数目\(deg_u\)属于集合\(D\),且\(u\)的点权等于这些孩子结点的点权之和. 给出一个整数\(s\),你能求出根节点权值为\(s\)的神犇多叉树的个数吗?请参照样例以更好的理解什么样的两棵多叉树会被视为不同的. 我们只需要知…
1.VB里面求幂的运算符是“^” 2.C++没有求幂的运算符, c++头文件加 #include<math.h>使用pow(x,y),可算出x的y次幂 3.C++中 “^”是按位“异或”运算符.…
题意:求A的B次方的后三位数字 思路1:常规求幂,直接取余求解 代码: #include<iostream> #include<cstdio> using namespace std; int main(){ int a,b; int ans; while(~scanf("%d%d",&a,&b)){ &&b==) break; a=a%;//底数取余 ans=; while(b--){ ans=(ans*a)%;//结果取余 }…
1.普通的求幂方法: 时间复杂度为O(n),对于比较大的数在1s限时内可能会TLE int pow(int base,int p){ int ans=1; for(int i=1;i<=p;i++) ans*=base; return ans; } 2.快速幂: 时间复杂度为logn (1)结合位运算 原理:指数p可转化为2进制形式 则basep=basei(1)*2^0+i(2)*2^1+i(3)*2^2+--  =basei(1)*2^0*basei(2)*2^1*basei(3)*2^2*…
洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377P=3021377,它有909526位.麦森数有许多重要应用,它与完全数密切相关. 任务:从文件中输入PP(1000<P<31000001000<P<3100000),计算2^P-1 的位数和最后500位数字(用十进制高…
/* 快速幂计算,传统计算方式如果幂次是100就要循环100遍求值 快速幂计算只需要循环7次即可 求x的y次方 x^y可以做如下分解 把y转换为2进制,设第n位的值为i,计算第n位的权为x^(2^(n-1)*i) 例如2^12 12的二进制是1100 12=2^3*1+2^2*1+2^1*0+2^0*0 因此2^12=2^(2^3+2^2) 分解得到2^12=2^(2^3)*2^(2^2) */ function myPow(dx, dy) { var r = 1; while (dy != 0…
用递推的方式写的写挂了,而如果用组合数又不会高精度除法,偶然看到了别人的只用高精度乘低精度求组合数的方法,记录一下 #include<bits/stdc++.h> using namespace std; const int maxn=60010; const long long M=1000000000; typedef long long LL; LL num[maxn]; int cnt[maxn*2];//记录素数因子的个数 int len=1; void get_cnt(int x,…
ios_base::sync_with_stdio(); cin.tie(); ], nxt[MAXM << ], Head[MAXN], ed = ; inline void addedge(int u, int v) { to[++ed] = v; nxt[ed] = Head[u]; Head[u] = ed; } #include<iostream> #include<cstdio> #include<cstdlib> #include<cst…
A * B Problem Plus 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1402 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 26449    Accepted Submission(s): 6917 Problem Description Calculate A * B.  …
今天讲个有趣的算法:如何快速求 \(n^m\),其中 n 和 m 都是整数. 为方便起见,此处假设 m >= 0,对于 m < 0 的情况,求出 \(n^{|m|}\) 后再取倒数即可. 另外此处暂不考虑结果越界的情况(超过 int64 范围). 当然不能用编程语言的内置函数,我们只能用加减乘除来实现. n 的 m 次方的数学含义是:m 个 n 相乘:n*n*n...*n,也就是说最简单的方式是执行 m 次乘法. 直接用乘法实现的问题是性能不高,其时间复杂度是 O(m),比如 \(3^{29}…
/* 编写一个递归算法,求解m的n次方. 我们一般求解m的n次方,一般使用n个m相乘的办法来求解. 其实我们还可以使用另外一种更有效率的办法求解这个问题. 我们知道一个数的0次方等于1,一个数的1次方等于该数本身. 如果一个数的n次方的n可以被2整数,我们可以将求解的问题, 分解为m的(n/2)次方乘以m的(n/2)次方.如果不能被2整除, 则可以将问题求解转变为m乘以m的(n-1)次方, 通过这个递归的办法,我们可以很快的分解求出问题. 编写代码如下:  */ unsigned long my…
https://nanti.jisuanke.com/t/31716 题意 n颗糖果n个人,按顺序给每个人任意数目(至少一个)糖果,问分配方案有多少. 分析 插板法或者暴力打表后发现答案就为2^(n-1),只是这个n有点大.于是马上用java.然而现实相当残酷,超时. 然后想到降幂,即(a^b)%m=a^(b%phi(m))%m,当gcd(b,m)==1.这里显然互质,于是降幂后仍然用java写,还是tle. 而后还尝试了C++大数来写,可能是使用姿势错误,也t了. 到了最后一小时,没错,我们队…
pow(x, n)  求x的n次方. 最简单的方法便是计算n个x相乘 public static double pow(double x, int n) { if (n == 0) return 1; else if (n > 0) return x*pow(x, n-1); else return pow(x, n+1)/x; } 该方法计算量较大,如pow(3, 1024)则需要1024次相乘运算. 可以将其简化为pow(9, 512),运算次数减小一半,一直简化 public static…
题目描述: 求A^B的最后三位数表示的整数,说明:A^B的含义是“A的B次方” 输入: 输入数据包含多个测试实例,每个实例占一行,由两个正整数A和B组成(1<=A,B<=10000),如果A=0,B=0,则表示输入数据的结束,不做处理. 输出: 对于每个测试实例,请输出A^B的最后三位表示的整数,每个输出占一行 (既然只求最后的三位数,那就没必要整个数字都求出来,计算过程中只保留最后三位就好了) #include <iostream> #include<cstdio>…