可以直接套动态dp,但因为它询问之间相互独立,所以可以直接倍增记x转移到fa[x]的矩阵 #include<bits/stdc++.h> #define CLR(a,x) memset(a,x,sizeof(a)) using namespace std; typedef long long ll; typedef pair<int,int> pa; ; const ll inf=1e17; inline ll rd(){ ll x=;; ;c=getchar();} +c-',c…
题面 最小支配集=全集-最大独立集 所以先把点权改成正无穷/负无穷来保证强制选/不选某个点到独立集里,然后变成了洛谷的动态DP模板 GTMDNOIP2018ZTY #include<stack> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ,M=,inf=1e9; int siz[N],far[N],imp[N],top[N],lst[N]; int…
题目大意 这还不是人尽皆知? 有一棵树, 每个节点放军队的代价是\(a_i\), 一条边连接的两个点至少有一个要放军队, 还有\(q\)次询问, 每次规定其中的两个一定需要/不可放置军队, 问这样修改以后的最小代价. 解题思路 考虑一个朴素的DP, 设\(f_{x,0/1}\)表示这个点选/不选的最小代价. 显然有 \[f_{x,0}=\sum f_{y,1} \] \[f_{x,1}=a_x+\sum \min(f_{y,0}, f_{y,1}) \] 其中\(y\)是\(x\)的儿子. 最后…
做法(倍增) 最好写的一种 以下0为不选,1为选 \(f_{i,0/1}\)为\(i\)子树的最小值,\(g_{i,0/1}\)为除i子树外的最小值 \(fh_{i,j,0/1,0/1}\)为确定\(i\)与\(i\)的\(2^j\)级祖先的状态,\(i\)的\(2^j\)祖先不包括i子树的最小值 这个转移挺好想的,故不赘述 查询 考虑边倍增爬上去,边处理即可 #include<bits/stdc++.h> typedef long long LL; const LL maxn=1e6+9,i…
此题场上打了一个正确的$44pts$,接着看错题疯狂$rush$“正确”的$44pts$,后来没$rush$完没将之前的代码$copy$回去,直接变零分了..... 这一题我们显然有一种$O(nm)$的做法 令$f[u][0]$表示在以$u$为根的子树内部署军队,且$u$不部署军队的最小代价. 令$f[u][1]$表示在以$u$为根的子树内部署军队,且$u$部署军队的最小代价. 结合题意(重要!)不难推出: $f[u][0]=\sum_{v∈son[u]} f[v][1]$ $f[u][1]=v…
题目大意: emmmmm 题解: QAQ #include <cstdio> #include <cstring> #include <iostream> using namespace std; #define ll long long #define ri register int #define rep(io, st, ed) for(ri io = st; io <= ed; io ++) #define drep(io, ed, st) for(ri i…
最小权覆盖集 = 全集 - 最大权独立集 强制取点.不取点可以使用把权值改成正无穷或负无穷实现 接下来就是经典的"动态最大权独立集"了 O(nlogn). 这不是我说的,是immortalCO大佬说的 于是我调了一万年极值,终在\(\frac{LLONG\_MAX}{3}\)时\(11s\)卡过... 知道最小权覆盖集 = 全集 - 最大权独立集,就是模板\(DDP\)了 #include <cstdio> #include <iostream> #includ…
Code: // luogu-judger-enable-o2 #include<bits/stdc++.h> #define ll long long #define lson (now<<1) #define rson ((now<<1)|1) #define setIO(s) freopen(s".in","r",stdin) #define maxn 300000 const long long inf = 1000000…
题目链接 这个$dark$题,嗯,不想说了. 法一:动态$dp$ 虽然早有听闻动态$dp$,但到最近才学,如果你了解动态$dp$,那就能很轻松做出这道题了.故利用这题在这里科普一下动态$dp$的具体内容. 我们先不考虑点上的强制选不选的限制,这是一个最小权边覆盖问题,大家肯定都会这道题的$O(nm)$的做法,这是一个很经典的树形$dp$.具体来讲就是一下两个转移: $$f_{x, 0} = \sum_{v} f_{v, 1} \qquad  f_{x, 1} = a_{x} + \sum_{v}…
模版 动态 dp 终于来写这个东西了.. LG 模版:给定 n 个点的数,点有点权, $ m $ 次修改点权,求修改完后这个树的最大独立集大小. 我们先来考虑朴素的最大独立集的 dp \[dp[u][0] = \sum_v max\{dp[v][1],dp[v][0]\}\\dp[u][1] = val[u] + \sum_v dp[v][0] \] 现在我们就拥有了一个 $ O(nm) $ 的做法,但是明显它不优秀. 既然支持修改,我们可以考虑树剖(或者LCT),现在树被我们剖成了重链和轻链.…