e-olymp Problem11 Big accuracy】的更多相关文章

传送门:点我 Big accuracy The rational fraction m/n is given. Write it in the decimal notation with k digits after the decimal point. Input Three numbers m, n, k are written in one line. 0 < m, n ≤ 100, 0 ≤ k ≤ 1000. Output Print k digits after the decimal…
使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来. 因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款编辑器,在运行过程中,可以查看各变量的值,便于理解,如下图: 只要安装了anac…
import re import pylab as pl import numpy as np if __name__=="__main__": accuracys=[] losses=[] with open(r'/home/wxl/bnscallog.txt','r') as f: lines=f.readlines(); print len(lines) str="".join(lines) str=str.replace('\n','') print len…
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又理解了一下.看了这篇文章: https://www.douban.com/note/247271147/?type=like 讲的很好. 都是基于这张图,先贴一下: PR Precision-Recall曲线,这个东西应该是来源于信息检索中对相关性的评价吧,precision就是你检索出来的结果中,…
OpenCV has function matchTemplate to easily do the template matching. But its accuracy can only reach pixel level, to achieve subpixel accuracy, need to do some calculations. Here i use a method to make template matching reach subpixel. First use mat…
yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall)和F1-Measure.(注: 相对来说,IR 的 ground truth 很多时候是一个 Ordered List, 而不是一个 Bool 类型的 Unordered Collection,在都找到的情况下,排在第三名还是第四名损失…
以分类任务为例, 假设要将样本分为\(n\)个类别. 先考虑单个样本\((X, z)\). 将标题\(z\)转化为一个\(n\)维列向量\(y = (y_1, \dots y_k, \dots, y_n)^T\): \[ y_k= \begin{cases} 0& k \neq z \\ 1& k = z \end{cases} \] \(p_z\)是模型将此样本分到类别\(z\)的概率, 即正确分类的概率\(p_{correct}\). 在这个样本上的Cross-Entropy Loss…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Zeros and Ones: Sum of a sample with replacement $S$ is the number of successes: $n$ independent trials, chance of success on a sing…
http://www.cnblogs.com/fengfenggirl/p/classification_evaluate.html 一.引言 分类算法有很多,不同分类算法又用很多不同的变种.不同的分类算法有不同的特定,在不同的数据集上表现的效果也不同,我们需要根据特定的任务进行算法的选择,如何选择分类,如何评价一个分类算法的好坏,前面关于决策树的介绍,我们主要用的正确率(accuracy)来评价分类算法. 正确率确实是一个很好很直观的评价指标,但是有时候正确率高并不能代表一个算法就好.比如某个…
============================================================== This aritcle came from here ==================================================================== http://blog.sina.com.cn/s/blog_4b59de070100ehl7.html 最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇…