这是Hinton的第10课 这节课有两篇论文可以作为背景或者课外读物<Adaptive mixtures of local experts>和<Improving neural networks by preventing co-adaptation of feature detectors>. 一.为什么模型的结合是有帮助的 这部分将介绍为什么当我们进行预测的时候,想要将许多模型结合起来.如果我们只有一个模型,我们不得不对这个模型选择某些能力:如果我们选择的能力太少,那么模型可以…
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度. 1763年,民间科学家Thomas Bayes发表了一篇名为<An essay towards solving a problem in the doctrine of chances>的论文, 这篇论文发表后,在当时并未产生多少影响,但是在20…
原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系列来自Stanford公开课Probabilistic Graphical Model中Daphne Koller 老师的讲解.(https://class.coursera.org/pgm-2012-002/class/index) 主要内容包括(转载请注明原始出处http://blog.csdn…
摘要:常规的神经网络权重是一个确定的值,贝叶斯神经网络(BNN)中,将权重视为一个概率分布.BNN的优化常常依赖于重参数技巧(reparameterization trick),本文对该优化方法进行概要介绍. 论文地址:http://proceedings.mlr.press/v37/blundell15.pdf 网络权重的点估计 常规神经网络可以基于MLE或MAP对权重作点估计. 基于MLE(maximum likelihood estimation): 基于MAP(maximum a pos…
主讲人 planktonli planktonli(1027753147) 18:58:12  大家好,我负责给大家讲讲 PRML的第3讲 linear regression的内容,请大家多多指教,群主让我们每个主讲人介绍下自己,赫赫,我也说两句,我是 applied mathematics + computer science的,有问题大家可以直接指出,互相学习.大家有兴趣的话可以看看我的博客: http://t.qq.com/keepuphero/mine,当然我给大家推荐一个好朋友的,他对…
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)2) 概率生成模型的分类模型3) 概率判别模型的分类模型4) 全贝叶斯概率的Laplace近似 需要注意的是,有三种形式的贝叶斯:1) 全贝叶斯2) 经验贝叶斯3) MAP贝叶斯我们大家熟知的是 MAP贝叶斯 MAP(poor man…
贝叶斯.概率分布与机器学习 转自:http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html  本文由LeftNotEasy原创,可以转载,但请保留出处和此行,如果有商业用途,请联系作者 wheeleast@gmail.com 一. 简单的说贝叶斯定理: 贝叶斯定理用数学的方法来解释生活中大家都知道的常识 形式最简单的定理往往是最好的定理,比如说中心极限定理,这样的定理往往会成为某一个领域的理论基础.机器学习的各种算法中使…
一.一些概念 互信息: 两个随机变量x和Y的互信息,定义X, Y的联合分布和独立分布乘积的相对熵. 贝叶斯公式: 贝叶斯带来的思考: 给定某些样本D,在这些样本中计算某结论出现的概率,即 给定样本D 所以可以推出,再假定p(Ai)相等,可以推出,这个就是最大似然估计做的事情,看下取哪个参数的时候,D出现的概率最大,最大似然估计其实假定了任何参数被取到的概率都是一样的. 二.贝叶斯网络 随机变量之间并不是独立,而是存在复杂的网络关系.贝叶斯网络又称为有向无环图模型,是一个概率图模型(PGM),根据…
本文的主题是“贝叶斯网络”(Bayesian Network) 贝叶斯网络是一个典型的图模型,它对感兴趣变量(variables of interest)及变量之间的关系(relationships)进行建模.当将贝叶斯模型与统计技术一起使用时,这种图模型分析数据具有如下几个优势: (1)    贝叶斯学习能够方便的处理不完全数据.例如考虑具有相关关系的多个输入变量的分类或回归问题,对标准的监督学习算法而言,变量间的相关性并不是它们处理的关键因素,当这些变量中有某个缺值时,它们的预测结果就会出现…
华电北风吹 日期:2015/12/12 朴素贝叶斯算法和高斯判别分析一样同属于生成模型.但朴素贝叶斯算法须要特征条件独立性如果,即样本各个特征之间相互独立. 一.朴素贝叶斯模型 朴素贝叶斯算法通过训练数据集学习联合概率分布p(x,y),其中x=(x1,x2,...,xn)∈Rn,y∈R.详细的对于K分类问题就是须要学习一个类别的先验概率分布p(y=ck),k=1,2,...,K和每一个类别下的条件概率分布(如式1-1) p(x|y)=p(x1,x2,...,xn|y)(1-1) 因为朴素贝叶斯算…