[学习笔记]lca-倍增】的更多相关文章

倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. 关于倍增思想: 倍增的思想很简单:通过区间[1,2i-1]与[1+2i-1,2i(2i-1+2i-1)]求出区间[1,2i]. 所以它可以用于区间求最值,求和.而到了树上之后,就变成了,求它往上任意次的祖先. 而倍增求LCA,就是用到了倍增这个功能. 倍增求LCA算法思路: f[i,j],表示结点i…
目录 ST表 算法 预处理 查询 关于 log2 Code 预处理 查询 例题 P2880 P2048 lca 树上 RMQ 前置知识:欧拉序列 算法 Code 离线 Tarjan 算法 Code 倍增 算法 Code 对比 例题 P3379 P2912 P2245 ST表 就是一个用倍增法求静态RMQ(区间最值)的算法. 预处理 \(O(nlogn)\),查询 \(O(1)\),远吊打其他算法. 算法 预处理 依次预处理出左端点为 \(l\),右端点为 \(l+2^j(1\le j\le lo…
算法笔记 模板: vector<int>g[N]; vector<int>edge[N]; ][N]; int deep[N]; int h[N]; void dfs(int o,int u,int w) { ,h[u]=h[o]+w; ;j<g[u].size();j++) { if(g[u][j]!=o) { anc[][g[u][j]]=u; ;i<;i++)anc[i][g[u][j]]=anc[i-][anc[i-][g[u][j]]]; dfs(u,g[u]…
倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\)的区间值.在这些预处理结果的基础上,我们可以进一步求出任意长度区间的答案. 比如区间最值问题\((RMQ)\)就可以使用倍增解决.对于每个起始点,预处理长度为\(2^n\)的区间最值.之后每段区间都可以以此求出,如: \(f(1,7)=\max(f(1,4),f(3,7))\) 以上是最简单的一个举例.在计…
\(kruskal\) 重构树学习笔记 前言 \(8102IONCC\) 中考到了,本蒟蒻不会,所以学一下. 前置知识 \(kruskal​\) 求最小(大)生成树,树上求 \(lca​\). 算法详解 \(kruskal\) 重构树可以解决瓶颈路问题(如:\(noip2013\) \(d1t3\) 货车运输,可以当做模板题来做,本文中也将此题作为例题): 我们来思考一下 \(kruskal\) 求最小(大)生成树的过程(后文中以最大生成树为例),大致过程可以概述为:将图中所有边从大到小排序,枚…
Day 4 学习笔记 各种图论 图是什么???? 不是我上传的图床上的那些垃圾解释... 一.图: 1.定义 由顶点和边组成的集合叫做图. 2.分类: 边如果是有向边,就是有向图:否则,就是无向图. 平常的图一般都有标号,我称之为标号的图(废话)有序图,如果没有标号,就称之为无序图(没标号的图) 注意有向图和无向图转换之后可能不同,然后有序图和无序图转换之后也不同. 3.存储方式 1.基础方式:邻接矩阵 优点:O(1)查询, 缺点:O(n^2)存储 这个图很好的 解释了邻接矩阵的情况. 如果是有…
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分治 倍增 构造 高精 模拟 图论 图 最短路,次短路 k短路 差分约束 最小生成树 拓扑排序 欧拉图 二分图染色,二分图匹配 最大团,最大独立集 tarjan找scc.桥.割点,缩点 网络流 最大流,最小割,费用流 有上下界的网络流 分数规划 2-SAT 树 LCA 最近公共祖先 树的直径 树的重心…
1. 例题引入:BZOJ3551 用一道例题引入:BZOJ3551 题目大意:有 \(N\) 座山峰,每座山峰有他的高度 \(h_i\).有些山峰之间有双向道路相连,共 \(M\) 条路径,每条路径有一个困难值,这个值越大表示越难走,现在有 \(Q\) 组询问,每组询问询问从点 \(v\) 开始只经过困难值小于等于 \(x\) 的路径所能到达的山峰中第 \(k\) 高的山峰的高度,如果无解输出 \(-1\).强制在线. 这道题的离线做法可以是线段树合并,可以参照我之前写过的一篇文章,里面有提到:…
前言 一次模拟赛的\(T3\):传送门 只会\(O(n^2)\)的我就\(gg\)了,并且对于题解提供的\(\text{dsu on tree}\)的做法一脸懵逼. 看网上的其他大佬写的笔记,我自己画图看了一天才看懂(我太蒻了),于是就有了这篇学习笔记. 概念篇/基础运用 算法简介 现在考虑这样一类树上统计问题: 无修改操作,询问允许离线 对子树信息进行统计(链上的信息在某些条件下也可以统计) 树上莫队?点分治? \(\text{dsu on tree}\)可以把它们吊起来打! \(\text{…
在学了一天其实是边学边摆之后我终于大概$get$后缀自动机了,,,就很感动,于是时隔多年我终于决定再写篇学习笔记辽$QwQ$ $umm$和$FFT$学习笔记一样,这是一篇单纯的$gql$的知识总结博,对新手并不友好,想学$SAM$的话我是推荐几篇博客:1 2 3(没有$hihocoder$主要我$jio$得有点太理论化了,全是文字没有图其实我挺难看下去的然后也没那么形象比较难理解$kk$ 然后因为我对纯文字的抽象知识点理解起来比较垃圾,,,所以全文可能会放比较多的图$QwQ$ 先放个已经建好的$…