VC维含义】的更多相关文章

VC维含义的个人理解 有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念.在读<神经网络原理>的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料,又参考了一些网络上的资料(主要是这篇,不过个人感觉仍然没有抓住重点),重新思考了一下,终于理解了这个定义所要传达的思想. 先要介绍分散(shatter)的概念:对于一个给定集合S={x1, ... ,xd},如果一个假设类H能够实现集合S中所有元素的任意一种标记方式,则称H能够分散S. 这样之后才有VC维的定…
有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念.在读<神经网络原理>的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料,又参考了一些网络上的资料(主要是这篇,不过个人感觉仍然没有抓住重点),重新思考了一下,终于理解了这个定义所要传达的思想. 先要介绍分散(shatter)的概念:对于一个给定集合S={x1, ... ,xd},如果一个假设类H能够实现集合S中所有元素的任意一种标记方式,则称H能够分散S. 这样之后才有VC维的定义:H的VC维表示为V…
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学习性提供了坚实的理论基础,但有时候,特别是对我们工程师而言…
VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC…
本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. Hoeffding不等式 -> 学习可行的两个核心条件 -> 有效假设 -> 成长函数 -> VC维 以下为原文: 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypothese…
1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个样本打散:假设空间的VC维就是它能打散的最大样本数目N.若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大: 几种假设空间的VC维如下: 2 感知机的VC维 d维感知机的vc维是d+1.(证明略) 3 VC维的物理意义 VC维表示的是做二分类时假设空间的自由度,是把数据集打散的能力.…
原文:http://blog.csdn.net/keith0812/article/details/8901113 “支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上” 结构化风险 结构化风险 = 经验风险 + 置信风险 经验风险 =  分类器在给定样本上的误差 置信风险 = 分类器在未知文本上分类的结果的误差 置信风险因素: 样本数量,给定的样本数量越大,学习结果越有可能正确,此时置信风险越小: 分类函数的VC维,显然VC维越大,推广能力越差,置信风险会变大. 提高样本…
vc理论(Vapnik–Chervonenkis theory )是由 Vladimir Vapnik 和 Alexey Chervonenkis发明的.该理论试图从统计学的角度解释学习的过程.而VC维是VC理论中一个很重要的部分. 定义:对一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的 种形式分开,则称函数集能够把h个样本打散;函数集的VC维就是它能打散的最大样本数目h.若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大. VC维反映了函数集的学习能力,VC维越…
以下文章转载自http://blog.sina.com.cn/s/blog_7103b28a0102w9tr.html 如有侵权,请留言,立即删除. 1 VC维的描述和理解 给定一个集合S={x1,x2,...xd},如果一个假设类H(hypothesis h ∈ H)能够实现集合S中所有元素的任意一种标记方式,则称H能够打散S.有了打散的定义,就得到VC维的定义:H的VC维表示能够被H打散的最大集合的大小.若H能分散任意大小的集合,那么VC(H)为无穷大. ​VC维反应的是hypothesis…
参考<机器学习导论> 假设我们有一个数据集,包含N个点.这N个点可以用2N种方法标记为正例和负例.因此,N个数据点可以定义2N种不同的学习问题.如果对于这些问题中的任何一个,我们都能够找到一个假设h属于H,将正例和负例分开,那么我们就称H散列N个点.也就是说,可以用N个点定义的任何学习问题都能够用一个从H中抽取的假设无误差地学习.可以被H散列的点的最大数量称为H的VC维,记为VC(H),它度量假设类H的学习能力. 通常我更喜欢用自由度来近似表达假设类的学习能力. 通常,在实际生活中,世界是平滑…